Towards Robust Federated Image Classification: An Empirical Study of Weight Selection Strategies in Manufacturing
- URL: http://arxiv.org/abs/2408.10024v3
- Date: Tue, 8 Oct 2024 11:51:00 GMT
- Title: Towards Robust Federated Image Classification: An Empirical Study of Weight Selection Strategies in Manufacturing
- Authors: Vinit Hegiste, Tatjana Legler, Martin Ruskowski,
- Abstract summary: This study investigates the comparative effectiveness of two weight selection strategies: Final Epoch Weight Selection (FEWS) and Optimal Epoch Weight Selection (OEWS)
We employ various neural network architectures, including EfficientNet, ResNet, and VGG, to assess the impact of these weight selection strategies on model convergence and robustness.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the realm of Federated Learning (FL), particularly within the manufacturing sector, the strategy for selecting client weights for server aggregation is pivotal for model performance. This study investigates the comparative effectiveness of two weight selection strategies: Final Epoch Weight Selection (FEWS) and Optimal Epoch Weight Selection (OEWS). Designed for manufacturing contexts where collaboration typically involves a limited number of partners (two to four clients), our research focuses on federated image classification tasks. We employ various neural network architectures, including EfficientNet, ResNet, and VGG, to assess the impact of these weight selection strategies on model convergence and robustness. Our research aims to determine whether FEWS or OEWS enhances the global FL model's performance across communication rounds (CRs). Through empirical analysis and rigorous experimentation, we seek to provide valuable insights for optimizing FL implementations in manufacturing, ensuring that collaborative efforts yield the most effective and reliable models with a limited number of participating clients. The findings from this study are expected to refine FL practices significantly in manufacturing, thereby enhancing the efficiency and performance of collaborative machine learning endeavors in this vital sector.
Related papers
- Reviving The Classics: Active Reward Modeling in Large Language Model Alignment [7.041595238178957]
Building neural reward models from human preferences is a pivotal component in reinforcement learning.
Given the scarcity and high cost of human annotation, how to select the most informative pairs to annotate is an essential yet challenging open problem.
We propose the Fisher information-based selection strategies, adapt theories from the classical experimental design literature, and apply them to the final linear layer of the deep neural network-based reward modeling tasks.
arXiv Detail & Related papers (2025-02-04T18:47:11Z) - Client-Centric Federated Adaptive Optimization [78.30827455292827]
Federated Learning (FL) is a distributed learning paradigm where clients collaboratively train a model while keeping their own data private.
We propose Federated-Centric Adaptive Optimization, which is a class of novel federated optimization approaches.
arXiv Detail & Related papers (2025-01-17T04:00:50Z) - Federated Fine-Tuning of LLMs: Framework Comparison and Research Directions [59.5243730853157]
Federated learning (FL) provides a privacy-preserving solution for fine-tuning pre-trained large language models (LLMs) using distributed private datasets.
This article conducts a comparative analysis of three advanced federated LLM (FedLLM) frameworks that integrate knowledge distillation (KD) and split learning (SL) to mitigate these issues.
arXiv Detail & Related papers (2025-01-08T11:37:06Z) - Balancing Similarity and Complementarity for Federated Learning [91.65503655796603]
Federated Learning (FL) is increasingly important in mobile and IoT systems.
One key challenge in FL is managing statistical heterogeneity, such as non-i.i.d. data.
We introduce a novel framework, textttFedSaC, which balances similarity and complementarity in FL cooperation.
arXiv Detail & Related papers (2024-05-16T08:16:19Z) - Automating Customer Needs Analysis: A Comparative Study of Large Language Models in the Travel Industry [2.4244694855867275]
Large Language Models (LLMs) have emerged as powerful tools for extracting valuable insights from vast amounts of textual data.
In this study, we conduct a comparative analysis of LLMs for the extraction of travel customer needs from TripAdvisor posts.
Our findings highlight the efficacy of opensource LLMs, particularly Mistral 7B, in achieving comparable performance to larger closed models.
arXiv Detail & Related papers (2024-04-27T18:28:10Z) - An Element-Wise Weights Aggregation Method for Federated Learning [11.9232569348563]
This paper introduces an innovative Element-Wise Weights Aggregation Method for Federated Learning (EWWA-FL)
EWWA-FL aggregates local weights to the global model at the level of individual elements, allowing each participating client to make element-wise contributions to the learning process.
By taking into account the unique dataset characteristics of each client, EWWA-FL enhances the robustness of the global model to different datasets.
arXiv Detail & Related papers (2024-04-24T15:16:06Z) - DPP-based Client Selection for Federated Learning with Non-IID Data [97.1195165400568]
This paper proposes a client selection (CS) method to tackle the communication bottleneck of federated learning (FL)
We first analyze the effect of CS in FL and show that FL training can be accelerated by adequately choosing participants to diversify the training dataset in each round of training.
We leverage data profiling and determinantal point process (DPP) sampling techniques to develop an algorithm termed Federated Learning with DPP-based Participant Selection (FL-DP$3$S)
arXiv Detail & Related papers (2023-03-30T13:14:54Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Fair and Consistent Federated Learning [48.19977689926562]
Federated learning (FL) has gain growing interests for its capability of learning from distributed data sources collectively.
We propose an FL framework to jointly consider performance consistency and algorithmic fairness across different local clients.
arXiv Detail & Related papers (2021-08-19T01:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.