The Practimum-Optimum Algorithm for Manufacturing Scheduling: A Paradigm Shift Leading to Breakthroughs in Scale and Performance
- URL: http://arxiv.org/abs/2408.10040v1
- Date: Mon, 19 Aug 2024 14:32:21 GMT
- Title: The Practimum-Optimum Algorithm for Manufacturing Scheduling: A Paradigm Shift Leading to Breakthroughs in Scale and Performance
- Authors: Moshe BenBassat,
- Abstract summary: The Practimum-Optimum (P-O) algorithm represents a paradigm shift in developing automatic optimization products.
By computerizing them into algorithms, P-O generates many valid schedules at far higher speeds than human schedulers are capable of.
The P-O algorithm is at the heart of Plataine Scheduler that, in one click, routinely schedules 30,000-50,000 tasks for real-life complex manufacturing operations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Practimum-Optimum (P-O) algorithm represents a paradigm shift in developing automatic optimization products for complex real-life business problems such as large-scale manufacturing scheduling. It leverages deep business domain expertise to create a group of virtual human expert (VHE) agents with different "schools of thought" on how to create high-quality schedules. By computerizing them into algorithms, P-O generates many valid schedules at far higher speeds than human schedulers are capable of. Initially, these schedules can also be local optimum peaks far away from high-quality schedules. By submitting these schedules to a reinforced machine learning algorithm (RL), P-O learns the weaknesses and strengths of each VHE schedule, and accordingly derives reward and punishment changes in the Demand Set that will modify the relative priorities for time and resource allocation that jobs received in the prior iteration that led to the current state of the schedule. These cause the core logic of the VHE algorithms to explore, in the subsequent iteration, substantially different parts of the schedules universe and potentially find higher-quality schedules. Using the hill climbing analogy, this may be viewed as a big jump, shifting from a given local peak to a faraway promising start point equipped with knowledge embedded in the demand set for future iterations. This is a fundamental difference from most contemporary algorithms, which spend considerable time on local micro-steps restricted to the neighbourhoods of local peaks they visit. This difference enables a breakthrough in scale and performance for fully automatic manufacturing scheduling in complex organizations. The P-O algorithm is at the heart of Plataine Scheduler that, in one click, routinely schedules 30,000-50,000 tasks for real-life complex manufacturing operations.
Related papers
- Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
We learn high-quality traces from POMDP executions generated by any solver.
We exploit data- and time-efficient Indu Logic Programming (ILP) to generate interpretable belief-based policy specifications.
We show that learneds expressed in Answer Set Programming (ASP) yield performance superior to neural networks and similar to optimal handcrafted task-specifics within lower computational time.
arXiv Detail & Related papers (2024-02-29T15:36:01Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - An End-to-End Reinforcement Learning Approach for Job-Shop Scheduling
Problems Based on Constraint Programming [5.070542698701157]
This paper proposes a novel end-to-end approach to solving scheduling problems by means of CP and Reinforcement Learning (RL)
Our approach leverages existing CP solvers to train an agent learning a Priority Dispatching Rule (PDR) that generalizes well to large instances, even from separate datasets.
arXiv Detail & Related papers (2023-06-09T08:24:56Z) - A Memetic Algorithm with Reinforcement Learning for Sociotechnical
Production Scheduling [0.0]
This article presents a memetic algorithm with applying deep reinforcement learning (DRL) to flexible job shop scheduling problems (DRC-FJSSP)
From research projects in industry, we recognize the need to consider flexible machines, flexible human workers, worker capabilities, setup and processing operations, material arrival times, complex job paths with parallel tasks for bill of material manufacturing, sequence-dependent setup times and (partially) automated tasks in human-machine-collaboration.
arXiv Detail & Related papers (2022-12-21T11:24:32Z) - Achieving mouse-level strategic evasion performance using real-time
computational planning [59.60094442546867]
Planning is an extraordinary ability in which the brain imagines and then enacts evaluated possible futures.
We develop a more efficient biologically-inspired planning algorithm, TLPPO, based on work on how the ecology of an animal governs the value of spatial planning.
We compare the performance of a real-time agent using TLPPO against the performance of live mice, all tasked with evading a robot predator.
arXiv Detail & Related papers (2022-11-04T18:34:36Z) - Genetic algorithms for the resource-constrained project scheduling
problem in aircraft heavy maintenance [0.0]
This article proposes genetic algorithms for solving the resource-constrained project scheduling problem (RCPSP) in AHM.
The objective of the study was to minimise the makespan of the maintenance plan.
arXiv Detail & Related papers (2022-06-16T13:41:20Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - A Two-stage Framework and Reinforcement Learning-based Optimization
Algorithms for Complex Scheduling Problems [54.61091936472494]
We develop a two-stage framework, in which reinforcement learning (RL) and traditional operations research (OR) algorithms are combined together.
The scheduling problem is solved in two stages, including a finite Markov decision process (MDP) and a mixed-integer programming process, respectively.
Results show that the proposed algorithms could stably and efficiently obtain satisfactory scheduling schemes for agile Earth observation satellite scheduling problems.
arXiv Detail & Related papers (2021-03-10T03:16:12Z) - Learning to Schedule DAG Tasks [7.577417675452624]
We present a novel learning-based approach to scheduling directed acyclic graphs (DAGs)
The algorithm employs a reinforcement learning agent to iteratively add edges directed to the DAG.
Our approach can be easily applied to any existing scheduling algorithms.
arXiv Detail & Related papers (2021-03-05T01:10:24Z) - Community detection using fast low-cardinality semidefinite programming [94.4878715085334]
We propose a new low-cardinality algorithm that generalizes the local update to maximize a semidefinite relaxation derived from Leiden-k-cut.
This proposed algorithm is scalable, outperforms state-of-the-art algorithms, and outperforms in real-world time with little additional cost.
arXiv Detail & Related papers (2020-12-04T15:46:30Z) - DeepSoCS: A Neural Scheduler for Heterogeneous System-on-Chip (SoC)
Resource Scheduling [0.0]
We present a novel scheduling solution for a class of System-on-Chip (SoC) systems.
Our Deep Reinforcement Learning (DRL)-based Scheduler (DeepSoCS) overcomes the brittleness of rule-based schedulers.
arXiv Detail & Related papers (2020-05-15T17:31:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.