Achieving mouse-level strategic evasion performance using real-time
computational planning
- URL: http://arxiv.org/abs/2211.02700v1
- Date: Fri, 4 Nov 2022 18:34:36 GMT
- Title: Achieving mouse-level strategic evasion performance using real-time
computational planning
- Authors: German Espinosa, Gabrielle E. Wink, Alexander T. Lai, Daniel A.
Dombeck and Malcolm A. MacIver
- Abstract summary: Planning is an extraordinary ability in which the brain imagines and then enacts evaluated possible futures.
We develop a more efficient biologically-inspired planning algorithm, TLPPO, based on work on how the ecology of an animal governs the value of spatial planning.
We compare the performance of a real-time agent using TLPPO against the performance of live mice, all tasked with evading a robot predator.
- Score: 59.60094442546867
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Planning is an extraordinary ability in which the brain imagines and then
enacts evaluated possible futures. Using traditional planning models, computer
scientists have attempted to replicate this capacity with some level of success
but ultimately face a reoccurring limitation: as the plan grows in steps, the
number of different possible futures makes it intractable to determine the
right sequence of actions to reach a goal state. Based on prior theoretical
work on how the ecology of an animal governs the value of spatial planning, we
developed a more efficient biologically-inspired planning algorithm, TLPPO.
This algorithm allows us to achieve mouselevel predator evasion performance
with orders of magnitude less computation than a widespread algorithm for
planning in the situations of partial observability that typify predator-prey
interactions. We compared the performance of a real-time agent using TLPPO
against the performance of live mice, all tasked with evading a robot predator.
We anticipate these results will be helpful to planning algorithm users and
developers, as well as to areas of neuroscience where robot-animal interaction
can provide a useful approach to studying the basis of complex behaviors.
Related papers
- Anticipate & Collab: Data-driven Task Anticipation and Knowledge-driven Planning for Human-robot Collaboration [13.631341660350028]
An agent assisting humans in daily living activities can collaborate more effectively by anticipating upcoming tasks.
Data-driven methods represent the state of the art in task anticipation, planning, and related problems, but these methods are resource-hungry and opaque.
This paper describes DaTAPlan, our framework that significantly extends our prior work toward human-robot collaboration.
arXiv Detail & Related papers (2024-04-04T16:52:48Z) - Learning Logic Specifications for Policy Guidance in POMDPs: an
Inductive Logic Programming Approach [57.788675205519986]
We learn high-quality traces from POMDP executions generated by any solver.
We exploit data- and time-efficient Indu Logic Programming (ILP) to generate interpretable belief-based policy specifications.
We show that learneds expressed in Answer Set Programming (ASP) yield performance superior to neural networks and similar to optimal handcrafted task-specifics within lower computational time.
arXiv Detail & Related papers (2024-02-29T15:36:01Z) - AI planning in the imagination: High-level planning on learned abstract
search spaces [68.75684174531962]
We propose a new method, called PiZero, that gives an agent the ability to plan in an abstract search space that the agent learns during training.
We evaluate our method on multiple domains, including the traveling salesman problem, Sokoban, 2048, the facility location problem, and Pacman.
arXiv Detail & Related papers (2023-08-16T22:47:16Z) - On efficient computation in active inference [1.1470070927586016]
We present a novel planning algorithm for finite temporal horizons with drastically lower computational complexity.
We also simplify the process of setting an appropriate target distribution for new and existing active inference planning schemes.
arXiv Detail & Related papers (2023-07-02T07:38:56Z) - A Framework for Neurosymbolic Robot Action Planning using Large Language Models [3.0501524254444767]
We present a framework aimed at bridging the gap between symbolic task planning and machine learning approaches.
The rationale is training Large Language Models (LLMs) into a neurosymbolic task planner compatible with the Planning Domain Definition Language (PDDL)
Preliminary results in selected domains show that our method can: (i) solve 95.5% of problems in a test data set of 1,000 samples; (ii) produce plans up to 13.5% shorter than a traditional symbolic planner; (iii) reduce average overall waiting times for a plan availability by up to 61.4%.
arXiv Detail & Related papers (2023-03-01T11:54:22Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
We propose to use reinforcement learning to identify subgoals in expert trajectories.
We build a vector-quantized generative model for the identified subgoals to perform subgoal-level planning.
In experiments, the algorithm excels at solving complex, long-horizon decision-making problems outperforming state-of-the-art.
arXiv Detail & Related papers (2023-01-30T15:04:39Z) - It Takes Two: Learning to Plan for Human-Robot Cooperative Carrying [0.6981715773998527]
We present a method for predicting realistic motion plans for cooperative human-robot teams on a table-carrying task.
We use a Variational Recurrent Neural Network, VRNN, to model the variation in the trajectory of a human-robot team over time.
We show that the model generates more human-like motion compared to a baseline, centralized sampling-based planner.
arXiv Detail & Related papers (2022-09-26T17:59:23Z) - Active Learning of Abstract Plan Feasibility [17.689758291966502]
We present an active learning approach to efficiently acquire an APF predictor through task-independent, curious exploration on a robot.
We leverage an infeasible subsequence property to prune candidate plans in the active learning strategy, allowing our system to learn from less data.
In a stacking domain where objects have non-uniform mass distributions, we show that our system permits real robot learning of an APF model in four hundred self-supervised interactions.
arXiv Detail & Related papers (2021-07-01T18:17:01Z) - Long-Horizon Visual Planning with Goal-Conditioned Hierarchical
Predictors [124.30562402952319]
The ability to predict and plan into the future is fundamental for agents acting in the world.
Current learning approaches for visual prediction and planning fail on long-horizon tasks.
We propose a framework for visual prediction and planning that is able to overcome both of these limitations.
arXiv Detail & Related papers (2020-06-23T17:58:56Z) - Decentralized MCTS via Learned Teammate Models [89.24858306636816]
We present a trainable online decentralized planning algorithm based on decentralized Monte Carlo Tree Search.
We show that deep learning and convolutional neural networks can be employed to produce accurate policy approximators.
arXiv Detail & Related papers (2020-03-19T13:10:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.