Aligning Visual Contrastive learning models via Preference Optimization
- URL: http://arxiv.org/abs/2411.08923v1
- Date: Tue, 12 Nov 2024 08:14:54 GMT
- Title: Aligning Visual Contrastive learning models via Preference Optimization
- Authors: Amirabbas Afzali, Borna Khodabandeh, Ali Rasekh, Mahyar JafariNodeh, Sepehr kazemi, Simon Gottschalk,
- Abstract summary: This paper introduces a novel method for training contrastive learning models using Preference Optimization (PO) to break down complex concepts.
Our method systematically aligns model behavior with desired preferences, enhancing performance on the targeted task.
In particular, we focus on enhancing model robustness against typographic attacks, commonly seen in contrastive models like CLIP.
We further apply our method to disentangle gender understanding and mitigate gender biases, offering a more nuanced control over these sensitive attributes.
- Score: 0.9438963196770565
- License:
- Abstract: Contrastive learning models have demonstrated impressive abilities to capture semantic similarities by aligning representations in the embedding space. However, their performance can be limited by the quality of the training data and its inherent biases. While Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO) have been applied to generative models to align them with human preferences, their use in contrastive learning has yet to be explored. This paper introduces a novel method for training contrastive learning models using Preference Optimization (PO) to break down complex concepts. Our method systematically aligns model behavior with desired preferences, enhancing performance on the targeted task. In particular, we focus on enhancing model robustness against typographic attacks, commonly seen in contrastive models like CLIP. We further apply our method to disentangle gender understanding and mitigate gender biases, offering a more nuanced control over these sensitive attributes. Our experiments demonstrate that models trained using PO outperform standard contrastive learning techniques while retaining their ability to handle adversarial challenges and maintain accuracy on other downstream tasks. This makes our method well-suited for tasks requiring fairness, robustness, and alignment with specific preferences. We evaluate our method on several vision-language tasks, tackling challenges such as typographic attacks. Additionally, we explore the model's ability to disentangle gender concepts and mitigate gender bias, showcasing the versatility of our approach.
Related papers
- Personalizing Reinforcement Learning from Human Feedback with Variational Preference Learning [12.742158403867002]
Reinforcement Learning from Human Feedback is a powerful paradigm for aligning foundation models to human values and preferences.
Current RLHF techniques cannot account for the naturally occurring differences in individual human preferences across a diverse population.
We develop a class of multimodal RLHF methods to address the need for pluralistic alignment.
arXiv Detail & Related papers (2024-08-19T15:18:30Z) - Adversarial Robustification via Text-to-Image Diffusion Models [56.37291240867549]
Adrial robustness has been conventionally believed as a challenging property to encode for neural networks.
We develop a scalable and model-agnostic solution to achieve adversarial robustness without using any data.
arXiv Detail & Related papers (2024-07-26T10:49:14Z) - Utilizing Adversarial Examples for Bias Mitigation and Accuracy Enhancement [3.0820287240219795]
We propose a novel approach to mitigate biases in computer vision models by utilizing counterfactual generation and fine-tuning.
Our approach leverages a curriculum learning framework combined with a fine-grained adversarial loss to fine-tune the model using adversarial examples.
We validate our approach through both qualitative and quantitative assessments, demonstrating improved bias mitigation and accuracy compared to existing methods.
arXiv Detail & Related papers (2024-04-18T00:41:32Z) - Understanding the Learning Dynamics of Alignment with Human Feedback [17.420727709895736]
This paper provides an attempt to theoretically analyze the learning dynamics of human preference alignment.
We show how the distribution of preference datasets influences the rate of model updates and provide rigorous guarantees on the training accuracy.
arXiv Detail & Related papers (2024-03-27T16:39:28Z) - Secrets of RLHF in Large Language Models Part II: Reward Modeling [134.97964938009588]
We introduce a series of novel methods to mitigate the influence of incorrect and ambiguous preferences in the dataset.
We also introduce contrastive learning to enhance the ability of reward models to distinguish between chosen and rejected responses.
arXiv Detail & Related papers (2024-01-11T17:56:59Z) - ULMA: Unified Language Model Alignment with Human Demonstration and
Point-wise Preference [16.73260713938154]
A typical alignment procedure consists of supervised fine-tuning and preference learning.
We introduce Point-wise Direct Preference Optimization, a novel preference learning method designed to harness point-wise feedback effectively.
Our work also uncovers a novel connection between supervised fine-tuning and point-wise preference learning, culminating in Unified Language Model Alignment.
arXiv Detail & Related papers (2023-12-05T07:52:12Z) - Contrastive Learning for Fair Representations [50.95604482330149]
Trained classification models can unintentionally lead to biased representations and predictions.
Existing debiasing methods for classification models, such as adversarial training, are often expensive to train and difficult to optimise.
We propose a method for mitigating bias by incorporating contrastive learning, in which instances sharing the same class label are encouraged to have similar representations.
arXiv Detail & Related papers (2021-09-22T10:47:51Z) - Unleashing the Power of Contrastive Self-Supervised Visual Models via
Contrast-Regularized Fine-Tuning [94.35586521144117]
We investigate whether applying contrastive learning to fine-tuning would bring further benefits.
We propose Contrast-regularized tuning (Core-tuning), a novel approach for fine-tuning contrastive self-supervised visual models.
arXiv Detail & Related papers (2021-02-12T16:31:24Z) - Stylized Adversarial Defense [105.88250594033053]
adversarial training creates perturbation patterns and includes them in the training set to robustify the model.
We propose to exploit additional information from the feature space to craft stronger adversaries.
Our adversarial training approach demonstrates strong robustness compared to state-of-the-art defenses.
arXiv Detail & Related papers (2020-07-29T08:38:10Z) - Learning Diverse Representations for Fast Adaptation to Distribution
Shift [78.83747601814669]
We present a method for learning multiple models, incorporating an objective that pressures each to learn a distinct way to solve the task.
We demonstrate our framework's ability to facilitate rapid adaptation to distribution shift.
arXiv Detail & Related papers (2020-06-12T12:23:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.