TANGO: Clustering with Typicality-Aware Nonlocal Mode-Seeking and Graph-Cut Optimization
- URL: http://arxiv.org/abs/2408.10084v1
- Date: Mon, 19 Aug 2024 15:26:25 GMT
- Title: TANGO: Clustering with Typicality-Aware Nonlocal Mode-Seeking and Graph-Cut Optimization
- Authors: Haowen Ma, Zhiguo Long, Hua Meng,
- Abstract summary: Density-based clustering methods by mode-seeking usually achieve clustering by using local density estimation to mine structural information.
We propose a new algorithm (TANGO) to establish local dependencies by exploiting a global-view emphtypicality of points.
It achieves final clustering by employing graph-cut on sub-clusters, thus avoiding the challenging selection of cluster centers.
- Score: 2.4783546111391215
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Density-based clustering methods by mode-seeking usually achieve clustering by using local density estimation to mine structural information, such as local dependencies from lower density points to higher neighbors. However, they often rely too heavily on \emph{local} structures and neglect \emph{global} characteristics, which can lead to significant errors in peak selection and dependency establishment. Although introducing more hyperparameters that revise dependencies can help mitigate this issue, tuning them is challenging and even impossible on real-world datasets. In this paper, we propose a new algorithm (TANGO) to establish local dependencies by exploiting a global-view \emph{typicality} of points, which is obtained by mining further the density distributions and initial dependencies. TANGO then obtains sub-clusters with the help of the adjusted dependencies, and characterizes the similarity between sub-clusters by incorporating path-based connectivity. It achieves final clustering by employing graph-cut on sub-clusters, thus avoiding the challenging selection of cluster centers. Moreover, this paper provides theoretical analysis and an efficient method for the calculation of typicality. Experimental results on several synthetic and $16$ real-world datasets demonstrate the effectiveness and superiority of TANGO.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Clustering by Mining Density Distributions and Splitting Manifold Structure [2.3759432635713895]
A top-down approach was recently proposed to improve the efficiency of spectral clustering.
This paper proposes to start from local structures to obtain micro-clusters.
A novel similarity measure between micro-clusters is then proposed for the final spectral clustering.
arXiv Detail & Related papers (2024-08-20T02:22:59Z) - Rethinking Clustered Federated Learning in NOMA Enhanced Wireless
Networks [60.09912912343705]
This study explores the benefits of integrating the novel clustered federated learning (CFL) approach with non-independent and identically distributed (non-IID) datasets.
A detailed theoretical analysis of the generalization gap that measures the degree of non-IID in the data distribution is presented.
Solutions to address the challenges posed by non-IID conditions are proposed with the analysis of the properties.
arXiv Detail & Related papers (2024-03-05T17:49:09Z) - Deep Embedding Clustering Driven by Sample Stability [16.53706617383543]
We propose a deep embedding clustering algorithm driven by sample stability (DECS)
Specifically, we start by constructing the initial feature space with an autoencoder and then learn the cluster-oriented embedding feature constrained by sample stability.
The experimental results on five datasets illustrate that the proposed method achieves superior performance compared to state-of-the-art clustering approaches.
arXiv Detail & Related papers (2024-01-29T09:19:49Z) - Graph-based Semi-supervised Local Clustering with Few Labeled Nodes [6.493238575291165]
Local clustering aims at extracting a local structure inside a graph without the necessity of knowing the entire graph structure.
We propose a new semi-supervised local clustering approach using only few labeled nodes.
arXiv Detail & Related papers (2022-11-20T22:55:07Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - Clustered Federated Learning via Generalized Total Variation
Minimization [83.26141667853057]
We study optimization methods to train local (or personalized) models for local datasets with a decentralized network structure.
Our main conceptual contribution is to formulate federated learning as total variation minimization (GTV)
Our main algorithmic contribution is a fully decentralized federated learning algorithm.
arXiv Detail & Related papers (2021-05-26T18:07:19Z) - Towards Uncovering the Intrinsic Data Structures for Unsupervised Domain
Adaptation using Structurally Regularized Deep Clustering [119.88565565454378]
Unsupervised domain adaptation (UDA) is to learn classification models that make predictions for unlabeled data on a target domain.
We propose a hybrid model of Structurally Regularized Deep Clustering, which integrates the regularized discriminative clustering of target data with a generative one.
Our proposed H-SRDC outperforms all the existing methods under both the inductive and transductive settings.
arXiv Detail & Related papers (2020-12-08T08:52:00Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Locally induced Gaussian processes for large-scale simulation
experiments [0.0]
We show how placement of inducing points and their multitude can be thwarted by pathologies.
Our proposed methodology hybridizes global inducing point and data subset-based local GP approximation.
We show that local inducing points extend their global and data-subset component parts on the accuracy--computational efficiency frontier.
arXiv Detail & Related papers (2020-08-28T21:37:46Z) - CycleCluster: Modernising Clustering Regularisation for Deep
Semi-Supervised Classification [0.0]
We propose a novel framework, CycleCluster, for deep semi-supervised classification.
Our core optimisation is driven by a new clustering based regularisation along with a graph based pseudo-labels and a shared deep network.
arXiv Detail & Related papers (2020-01-15T13:34:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.