Graph-based Semi-supervised and Unsupervised Methods for Local Clustering
- URL: http://arxiv.org/abs/2504.19419v1
- Date: Mon, 28 Apr 2025 02:10:18 GMT
- Title: Graph-based Semi-supervised and Unsupervised Methods for Local Clustering
- Authors: Zhaiming Shen, Sung Ha Kang,
- Abstract summary: Local clustering aims to identify specific substructures within a large graph without requiring full knowledge of the entire graph.<n>We first propose a method for identifying specific local clusters when very few labeled data is given, which we term semi-supervised local clustering.<n>We then extend this approach to the unsupervised setting when no prior information on labels is available.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Local clustering aims to identify specific substructures within a large graph without requiring full knowledge of the entire graph. These substructures are typically small compared to the overall graph, enabling the problem to be approached by finding a sparse solution to a linear system associated with the graph Laplacian. In this work, we first propose a method for identifying specific local clusters when very few labeled data is given, which we term semi-supervised local clustering. We then extend this approach to the unsupervised setting when no prior information on labels is available. The proposed methods involve randomly sampling the graph, applying diffusion through local cluster extraction, then examining the overlap among the results to find each cluster. We establish the co-membership conditions for any pair of nodes and rigorously prove the correctness of our methods. Additionally, we conduct extensive experiments to demonstrate that the proposed methods achieve state-of-the-arts results in the low-label rates regime.
Related papers
- Clustering Based on Density Propagation and Subcluster Merging [92.15924057172195]
We propose a density-based node clustering approach that automatically determines the number of clusters and can be applied in both data space and graph space.
Unlike traditional density-based clustering methods, which necessitate calculating the distance between any two nodes, our proposed technique determines density through a propagation process.
arXiv Detail & Related papers (2024-11-04T04:09:36Z) - TANGO: Clustering with Typicality-Aware Nonlocal Mode-Seeking and Graph-Cut Optimization [2.4783546111391215]
Density-based clustering methods by mode-seeking usually achieve clustering by using local density estimation to mine structural information.
We propose a new algorithm (TANGO) to establish local dependencies by exploiting a global-view emphtypicality of points.
It achieves final clustering by employing graph-cut on sub-clusters, thus avoiding the challenging selection of cluster centers.
arXiv Detail & Related papers (2024-08-19T15:26:25Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - Graph-based Semi-supervised Local Clustering with Few Labeled Nodes [6.493238575291165]
Local clustering aims at extracting a local structure inside a graph without the necessity of knowing the entire graph structure.
We propose a new semi-supervised local clustering approach using only few labeled nodes.
arXiv Detail & Related papers (2022-11-20T22:55:07Z) - Anomaly Clustering: Grouping Images into Coherent Clusters of Anomaly
Types [60.45942774425782]
We introduce anomaly clustering, whose goal is to group data into coherent clusters of anomaly types.
This is different from anomaly detection, whose goal is to divide anomalies from normal data.
We present a simple yet effective clustering framework using a patch-based pretrained deep embeddings and off-the-shelf clustering methods.
arXiv Detail & Related papers (2021-12-21T23:11:33Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - Structured Graph Learning for Clustering and Semi-supervised
Classification [74.35376212789132]
We propose a graph learning framework to preserve both the local and global structure of data.
Our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure.
Our model is equivalent to a combination of kernel k-means and k-means methods under certain condition.
arXiv Detail & Related papers (2020-08-31T08:41:20Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z) - Incorporating User's Preference into Attributed Graph Clustering [14.082520165369885]
We propose two quality measures for a local cluster: Graph Unimodality (GU) and Attribute Unimodality (AU)
The local cluster detected by LOCLU concentrates on the region of interest, provides efficient information flow in the graph and exhibits a unimodal data distribution in the subspace of the designated attributes.
arXiv Detail & Related papers (2020-03-24T19:07:22Z) - CycleCluster: Modernising Clustering Regularisation for Deep
Semi-Supervised Classification [0.0]
We propose a novel framework, CycleCluster, for deep semi-supervised classification.
Our core optimisation is driven by a new clustering based regularisation along with a graph based pseudo-labels and a shared deep network.
arXiv Detail & Related papers (2020-01-15T13:34:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.