Vulseye: Detect Smart Contract Vulnerabilities via Stateful Directed Graybox Fuzzing
- URL: http://arxiv.org/abs/2408.10116v1
- Date: Mon, 19 Aug 2024 16:03:03 GMT
- Title: Vulseye: Detect Smart Contract Vulnerabilities via Stateful Directed Graybox Fuzzing
- Authors: Ruichao Liang, Jing Chen, Cong Wu, Kun He, Yueming Wu, Ruochen Cao, Ruiying Du, Yang Liu, Ziming Zhao,
- Abstract summary: Vulseye is a stateful directed graybox fuzzer for smart contracts guided by vulnerabilities.
We introduce Code Targets and State Targets into fuzzing loops as the testing targets of Vulseye.
In comparison with state-of-the-art fuzzers, Vulseye demonstrated superior effectiveness and efficiency.
- Score: 15.974697197575304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart contracts, the cornerstone of decentralized applications, have become increasingly prominent in revolutionizing the digital landscape. However, vulnerabilities in smart contracts pose great risks to user assets and undermine overall trust in decentralized systems. But current smart contract fuzzers fall short of expectations in testing efficiency for two primary reasons. Firstly, smart contracts are stateful programs, and existing approaches, primarily coverage-guided, lack effective feedback from the contract state. Consequently, they struggle to effectively explore the contract state space. Secondly, coverage-guided fuzzers, aiming for comprehensive program coverage, may lead to a wastage of testing resources on benign code areas. This wastage worsens in smart contract testing, as the mix of code and state spaces further complicates comprehensive testing. To address these challenges, we propose Vulseye, a stateful directed graybox fuzzer for smart contracts guided by vulnerabilities. Different from prior works, Vulseye achieves stateful directed fuzzing by prioritizing testing resources to code areas and contract states that are more prone to vulnerabilities. We introduce Code Targets and State Targets into fuzzing loops as the testing targets of Vulseye. We use static analysis and pattern matching to pinpoint Code Targets, and propose a scalable backward analysis algorithm to specify State Targets. We design a novel fitness metric that leverages feedback from both the contract code space and state space, directing fuzzing toward these targets. With the guidance of code and state targets, Vulseye alleviates the wastage of testing resources on benign code areas and achieves effective stateful fuzzing. In comparison with state-of-the-art fuzzers, Vulseye demonstrated superior effectiveness and efficiency.
Related papers
- RedCode: Risky Code Execution and Generation Benchmark for Code Agents [50.81206098588923]
RedCode is a benchmark for risky code execution and generation.
RedCode-Exec provides challenging prompts that could lead to risky code execution.
RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions.
arXiv Detail & Related papers (2024-11-12T13:30:06Z) - Analyzing the Impact of Copying-and-Pasting Vulnerable Solidity Code Snippets from Question-and-Answer Websites [3.844857617939819]
We conduct a study on the impact of vulnerable code reuse from Q&A websites during the development of smart contracts.
This paper proposes a pattern-based vulnerability detection tool that is able to analyze code snippets (i.e., incomplete code) as well as full smart contracts.
Our results show that our vulnerability search, as well as our code clone detection, are comparable to state-of-the-art while being applicable to code snippets.
arXiv Detail & Related papers (2024-09-11T19:33:27Z) - Identifying Smart Contract Security Issues in Code Snippets from Stack Overflow [34.79673982473015]
We introduce SOChecker, a tool to identify potential vulnerabilities in incomplete SO smart contract code snippets.
Results show that SOChecker achieves an F1 score of 68.2%, greatly surpassing GPT-3.5 and GPT-4.
Our findings underscore the need to improve the security of code snippets from Q&A websites.
arXiv Detail & Related papers (2024-07-18T08:25:16Z) - Effective Targeted Testing of Smart Contracts [0.0]
Since smart contracts are immutable, their bugs cannot be fixed, which may lead to significant monetary losses.
Our framework, Griffin, tackles this deficiency by employing a targeted symbolic execution technique for generating test data.
This paper discusses how smart contracts differ from legacy software in targeted symbolic execution and how these differences can affect the tool structure.
arXiv Detail & Related papers (2024-07-05T04:38:11Z) - Vulnerability Scanners for Ethereum Smart Contracts: A Large-Scale Study [44.25093111430751]
In 2023 alone, such vulnerabilities led to substantial financial losses exceeding a billion of US dollars.
Various tools have been developed to detect and mitigate vulnerabilities in smart contracts.
This study investigates the gap between the effectiveness of existing security scanners and the vulnerabilities that still persist in practice.
arXiv Detail & Related papers (2023-12-27T11:26:26Z) - Generation Probabilities Are Not Enough: Uncertainty Highlighting in AI Code Completions [54.55334589363247]
We study whether conveying information about uncertainty enables programmers to more quickly and accurately produce code.
We find that highlighting tokens with the highest predicted likelihood of being edited leads to faster task completion and more targeted edits.
arXiv Detail & Related papers (2023-02-14T18:43:34Z) - An Automated Vulnerability Detection Framework for Smart Contracts [18.758795474791427]
We propose a framework to automatically detect vulnerabilities in smart contracts on the blockchain.
More specifically, first, we utilize novel feature vector generation techniques from bytecode of smart contract.
Next, the collected vectors are fed into our novel metric learning-based deep neural network(DNN) to get the detection result.
arXiv Detail & Related papers (2023-01-20T23:16:04Z) - Combining Graph Neural Networks with Expert Knowledge for Smart Contract
Vulnerability Detection [37.7763374870026]
Existing efforts for contract security analysis rely on rigid rules defined by experts, which are labor-intensive and non-scalable.
We propose a novel temporal message propagation network to extract the graph feature from the normalized graph, and combine the graph feature with designed expert patterns to yield a final detection system.
arXiv Detail & Related papers (2021-07-24T13:16:30Z) - Smart Contract Vulnerability Detection: From Pure Neural Network to
Interpretable Graph Feature and Expert Pattern Fusion [48.744359070088166]
Conventional smart contract vulnerability detection methods heavily rely on fixed expert rules.
Recent deep learning approaches alleviate this issue but fail to encode useful expert knowledge.
We develop automatic tools to extract expert patterns from the source code.
We then cast the code into a semantic graph to extract deep graph features.
arXiv Detail & Related papers (2021-06-17T07:12:13Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
Existing machine learning-based vulnerability detection methods are limited and only inspect whether the smart contract is vulnerable.
We propose ESCORT, the first Deep Neural Network (DNN)-based vulnerability detection framework for smart contracts.
We show that ESCORT achieves an average F1-score of 95% on six vulnerability types and the detection time is 0.02 seconds per contract.
arXiv Detail & Related papers (2021-03-23T15:04:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.