論文の概要: Perceptual Depth Quality Assessment of Stereoscopic Omnidirectional Images
- arxiv url: http://arxiv.org/abs/2408.10134v1
- Date: Mon, 19 Aug 2024 16:28:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 15:33:14.602731
- Title: Perceptual Depth Quality Assessment of Stereoscopic Omnidirectional Images
- Title(参考訳): 立体視全方位画像の知覚深度品質評価
- Authors: Wei Zhou, Zhou Wang,
- Abstract要約: 立体視全方位画像の高能率非参照(NR)深度品質評価のための目標品質評価モデルDQIを開発した。
人間の視覚システム(HVS)の知覚特性に触発されたDQIは,多色チャネル,適応型ビューポート選択,眼間不一致の特徴を基盤として構築されている。
- 参考スコア(独自算出の注目度): 10.382801621282228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depth perception plays an essential role in the viewer experience for immersive virtual reality (VR) visual environments. However, previous research investigations in the depth quality of 3D/stereoscopic images are rather limited, and in particular, are largely lacking for 3D viewing of 360-degree omnidirectional content. In this work, we make one of the first attempts to develop an objective quality assessment model named depth quality index (DQI) for efficient no-reference (NR) depth quality assessment of stereoscopic omnidirectional images. Motivated by the perceptual characteristics of the human visual system (HVS), the proposed DQI is built upon multi-color-channel, adaptive viewport selection, and interocular discrepancy features. Experimental results demonstrate that the proposed method outperforms state-of-the-art image quality assessment (IQA) and depth quality assessment (DQA) approaches in predicting the perceptual depth quality when tested using both single-viewport and omnidirectional stereoscopic image databases. Furthermore, we demonstrate that combining the proposed depth quality model with existing IQA methods significantly boosts the performance in predicting the overall quality of 3D omnidirectional images.
- Abstract(参考訳): 没入型バーチャルリアリティ(VR)視覚環境において、奥行き知覚は視聴者体験において重要な役割を果たす。
しかし、3D/立体画像の奥行き品質に関するこれまでの研究では、特に360度全方位の3次元視認には、かなり制限がある。
本研究では,立体視全方位画像の高能率非参照(NR)深度品質評価のための,DQI(Deep Quality Index)と呼ばれる客観的品質評価モデルの開発を試みている。
人間の視覚システム(HVS)の知覚特性に触発されたDQIは,多色チャネル,適応型ビューポート選択,眼間不一致の特徴を基盤として構築されている。
実験結果から,本手法は,単視点および全方向の立体画像データベースを用いてテストした場合の知覚深度品質の予測において,最先端画像品質評価 (IQA) と深度品質評価 (DQA) のアプローチより優れていることが示された。
さらに,提案した深度品質モデルと既存のIQA手法を組み合わせることで,全方位画像の全体的な品質を予測する性能が著しく向上することが実証された。
関連論文リスト
- Assessor360: Multi-sequence Network for Blind Omnidirectional Image
Quality Assessment [50.82681686110528]
Blind Omnidirectional Image Quality Assessment (BOIQA)は、全方位画像(ODI)の人間の知覚品質を客観的に評価することを目的としている。
ODIの品質評価は、既存のBOIQAパイプラインがオブザーバのブラウジングプロセスのモデリングを欠いているという事実によって著しく妨げられている。
Assessor360と呼ばれるBOIQAのための新しいマルチシーケンスネットワークを提案する。
論文 参考訳(メタデータ) (2023-05-18T13:55:28Z) - Blind Multimodal Quality Assessment: A Brief Survey and A Case Study of
Low-light Images [73.27643795557778]
ブラインド画像品質評価(BIQA)は、視覚信号の客観的スコアを自動的に正確に予測することを目的としている。
この分野での最近の発展は、ヒトの主観的評価パターンと矛盾しない一助的解によって支配されている。
主観的評価から客観的スコアへの低照度画像の一意なブラインドマルチモーダル品質評価(BMQA)を提案する。
論文 参考訳(メタデータ) (2023-03-18T09:04:55Z) - End-to-end deep multi-score model for No-reference stereoscopic image
quality assessment [6.254148286968409]
我々は、深層多スコア畳み込みニューラルネットワーク(CNN)を用いて、参照なしで立体画像の品質を推定する。
まず、左の視点の質を予測し、次に、左の視点の質を予測し、第3と第4に、ステレオ視点の質とグローバルな品質をそれぞれ予測し、グローバルスコアを究極の品質とする。
論文 参考訳(メタデータ) (2022-11-02T16:45:35Z) - Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling [71.68672977990403]
本研究では,3次元高密度点雲の知覚的視覚的品質を自動評価するために,Structure Guided Resampling (SGR) を用いた客観的点雲品質指標を提案する。
提案するSGRは,参照情報の不要な汎用ブラインド品質評価手法である。
論文 参考訳(メタデータ) (2022-08-31T02:42:55Z) - Evaluating Point Cloud from Moving Camera Videos: A No-Reference Metric [58.309735075960745]
本稿では,ビデオ品質評価(VQA)手法を用いて,ポイントクラウド品質評価(PCQA)タスクの処理方法について検討する。
捉えたビデオは、いくつかの円形の経路を通して、点雲の周りでカメラを回転させて生成する。
トレーニング可能な2D-CNNモデルと事前学習された3D-CNNモデルを用いて、選択したキーフレームとビデオクリップから空間的・時間的品質認識特徴を抽出する。
論文 参考訳(メタデータ) (2022-08-30T08:59:41Z) - DeepWSD: Projecting Degradations in Perceptual Space to Wasserstein
Distance in Deep Feature Space [67.07476542850566]
本稿では,統計的分布の観点から知覚空間の品質劣化をモデル化する。
品質は、深い特徴領域におけるワッサーシュタイン距離に基づいて測定される。
ニューラルネットワークの特徴に基づいて実行されるディープワッサースタイン距離(ディープWSD)は、品質汚染のより良い解釈性をもたらす。
論文 参考訳(メタデータ) (2022-08-05T02:46:12Z) - No-Reference Quality Assessment for 360-degree Images by Analysis of
Multi-frequency Information and Local-global Naturalness [26.614657212889398]
360度・全方位画像(OIs)は、仮想現実(VR)の普及により注目されている。
マルチ周波数情報と局所Global Naturalness(MFILGN)を用いた新しい非参照全方位画像品質評価アルゴリズム(NR OIQA)を提案する。
2つのOIQAデータベースの実験結果は、提案されたMFILGNが最先端のアプローチを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-22T22:52:35Z) - Deep Multi-Scale Features Learning for Distorted Image Quality
Assessment [20.7146855562825]
既存のディープニューラルネットワーク(DNN)はIQA問題に対処する上で大きな効果を示している。
画像品質予測のための階層的マルチスケール特徴を持つDNNを構築するためにピラミッド特徴学習を提案する。
提案するネットワークは、エンド・ツー・エンドの監視方法に最適化されている。
論文 参考訳(メタデータ) (2020-12-01T23:39:01Z) - D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual
Odometry [57.5549733585324]
D3VOは、深度、ポーズ、不確実性推定という3つのレベルでディープネットワークを利用する、単眼の視覚計測のための新しいフレームワークである。
まず,ステレオビデオを用いた自己監督型単眼深度推定ネットワークを提案する。
入力画像上の画素の光度不確かさをモデル化し、深度推定精度を向上させる。
論文 参考訳(メタデータ) (2020-03-02T17:47:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。