Perceptual Depth Quality Assessment of Stereoscopic Omnidirectional Images
- URL: http://arxiv.org/abs/2408.10134v1
- Date: Mon, 19 Aug 2024 16:28:05 GMT
- Title: Perceptual Depth Quality Assessment of Stereoscopic Omnidirectional Images
- Authors: Wei Zhou, Zhou Wang,
- Abstract summary: We develop an objective quality assessment model named depth quality index (DQI) for efficient no-reference (NR) depth quality assessment of stereoscopic omnidirectional images.
Motivated by the perceptual characteristics of the human visual system (HVS), the proposed DQI is built upon multi-color-channel, adaptive viewport selection, and interocular discrepancy features.
- Score: 10.382801621282228
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depth perception plays an essential role in the viewer experience for immersive virtual reality (VR) visual environments. However, previous research investigations in the depth quality of 3D/stereoscopic images are rather limited, and in particular, are largely lacking for 3D viewing of 360-degree omnidirectional content. In this work, we make one of the first attempts to develop an objective quality assessment model named depth quality index (DQI) for efficient no-reference (NR) depth quality assessment of stereoscopic omnidirectional images. Motivated by the perceptual characteristics of the human visual system (HVS), the proposed DQI is built upon multi-color-channel, adaptive viewport selection, and interocular discrepancy features. Experimental results demonstrate that the proposed method outperforms state-of-the-art image quality assessment (IQA) and depth quality assessment (DQA) approaches in predicting the perceptual depth quality when tested using both single-viewport and omnidirectional stereoscopic image databases. Furthermore, we demonstrate that combining the proposed depth quality model with existing IQA methods significantly boosts the performance in predicting the overall quality of 3D omnidirectional images.
Related papers
- Assessor360: Multi-sequence Network for Blind Omnidirectional Image
Quality Assessment [50.82681686110528]
Blind Omnidirectional Image Quality Assessment (BOIQA) aims to objectively assess the human perceptual quality of omnidirectional images (ODIs)
The quality assessment of ODIs is severely hampered by the fact that the existing BOIQA pipeline lacks the modeling of the observer's browsing process.
We propose a novel multi-sequence network for BOIQA called Assessor360, which is derived from the realistic multi-assessor ODI quality assessment procedure.
arXiv Detail & Related papers (2023-05-18T13:55:28Z) - Blind Multimodal Quality Assessment: A Brief Survey and A Case Study of
Low-light Images [73.27643795557778]
Blind image quality assessment (BIQA) aims at automatically and accurately forecasting objective scores for visual signals.
Recent developments in this field are dominated by unimodal solutions inconsistent with human subjective rating patterns.
We present a unique blind multimodal quality assessment (BMQA) of low-light images from subjective evaluation to objective score.
arXiv Detail & Related papers (2023-03-18T09:04:55Z) - End-to-end deep multi-score model for No-reference stereoscopic image
quality assessment [6.254148286968409]
We use a deep multi-score Convolutional Neural Network (CNN) to estimate stereoscopic image quality without reference.
Our model has been trained to perform four tasks: First, predict the left view's quality. Second, predict the quality of the left view. Third and fourth, predict the quality of the stereo view and global quality, respectively, with the global score serving as the ultimate quality.
arXiv Detail & Related papers (2022-11-02T16:45:35Z) - Blind Quality Assessment of 3D Dense Point Clouds with Structure Guided
Resampling [71.68672977990403]
We propose an objective point cloud quality index with Structure Guided Resampling (SGR) to automatically evaluate the perceptually visual quality of 3D dense point clouds.
The proposed SGR is a general-purpose blind quality assessment method without the assistance of any reference information.
arXiv Detail & Related papers (2022-08-31T02:42:55Z) - Evaluating Point Cloud from Moving Camera Videos: A No-Reference Metric [58.309735075960745]
This paper explores the way of dealing with point cloud quality assessment (PCQA) tasks via video quality assessment (VQA) methods.
We generate the captured videos by rotating the camera around the point clouds through several circular pathways.
We extract both spatial and temporal quality-aware features from the selected key frames and the video clips through using trainable 2D-CNN and pre-trained 3D-CNN models.
arXiv Detail & Related papers (2022-08-30T08:59:41Z) - DeepWSD: Projecting Degradations in Perceptual Space to Wasserstein
Distance in Deep Feature Space [67.07476542850566]
We propose to model the quality degradation in perceptual space from a statistical distribution perspective.
The quality is measured based upon the Wasserstein distance in the deep feature domain.
The deep Wasserstein distance (DeepWSD) performed on features from neural networks enjoys better interpretability of the quality contamination.
arXiv Detail & Related papers (2022-08-05T02:46:12Z) - No-Reference Quality Assessment for 360-degree Images by Analysis of
Multi-frequency Information and Local-global Naturalness [26.614657212889398]
360-degree/omnidirectional images (OIs) have achieved remarkable attentions due to the increasing applications of virtual reality (VR)
We propose a novel and effective no-reference omnidirectional image quality assessment (NR OIQA) algorithm by Multi-Frequency Information and Local-Global Naturalness (MFILGN)
Experimental results on two publicly available OIQA databases demonstrate that our proposed MFILGN outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2021-02-22T22:52:35Z) - Deep Multi-Scale Features Learning for Distorted Image Quality
Assessment [20.7146855562825]
Existing deep neural networks (DNNs) have shown significant effectiveness for tackling the IQA problem.
We propose to use pyramid features learning to build a DNN with hierarchical multi-scale features for distorted image quality prediction.
Our proposed network is optimized in a deep end-to-end supervision manner.
arXiv Detail & Related papers (2020-12-01T23:39:01Z) - D3VO: Deep Depth, Deep Pose and Deep Uncertainty for Monocular Visual
Odometry [57.5549733585324]
D3VO is a novel framework for monocular visual odometry that exploits deep networks on three levels -- deep depth, pose and uncertainty estimation.
We first propose a novel self-supervised monocular depth estimation network trained on stereo videos without any external supervision.
We model the photometric uncertainties of pixels on the input images, which improves the depth estimation accuracy.
arXiv Detail & Related papers (2020-03-02T17:47:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.