論文の概要: LoopSplat: Loop Closure by Registering 3D Gaussian Splats
- arxiv url: http://arxiv.org/abs/2408.10154v2
- Date: Tue, 20 Aug 2024 02:43:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 12:23:48.859834
- Title: LoopSplat: Loop Closure by Registering 3D Gaussian Splats
- Title(参考訳): LoopSplat: 3Dガウスプレートの登録によるループ閉鎖
- Authors: Liyuan Zhu, Yue Li, Erik Sandström, Shengyu Huang, Konrad Schindler, Iro Armeni,
- Abstract要約: LoopSplatはRGB-D画像を入力として取り出し、3DGSサブマップとフレーム・ツー・モデル追跡による密集マッピングを実行する。
LoopSplatはループ閉鎖をオンラインでトリガーし、サブマップ間の相対ループエッジ制約を直接3DGS登録を通じて計算する。
- 参考スコア(独自算出の注目度): 21.93501886249626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simultaneous Localization and Mapping (SLAM) based on 3D Gaussian Splats (3DGS) has recently shown promise towards more accurate, dense 3D scene maps. However, existing 3DGS-based methods fail to address the global consistency of the scene via loop closure and/or global bundle adjustment. To this end, we propose LoopSplat, which takes RGB-D images as input and performs dense mapping with 3DGS submaps and frame-to-model tracking. LoopSplat triggers loop closure online and computes relative loop edge constraints between submaps directly via 3DGS registration, leading to improvements in efficiency and accuracy over traditional global-to-local point cloud registration. It uses a robust pose graph optimization formulation and rigidly aligns the submaps to achieve global consistency. Evaluation on the synthetic Replica and real-world TUM-RGBD, ScanNet, and ScanNet++ datasets demonstrates competitive or superior tracking, mapping, and rendering compared to existing methods for dense RGB-D SLAM. Code is available at loopsplat.github.io.
- Abstract(参考訳): 3次元ガウススプレート(3DGS)に基づく同時局所化マッピング(SLAM)は,最近より正確で高密度な3Dシーンマップの実現を約束している。
しかし、既存の3DGSベースの手法ではループ閉鎖やグローバルバンドル調整によってシーンのグローバルな整合性に対処できない。
この目的のために,RGB-D画像を入力として取り出し,3DGSサブマップとフレーム・ツー・モデル追跡を用いた高密度マッピングを行うLoopSplatを提案する。
LoopSplatはループの閉鎖をオンラインでトリガーし、3DGSの登録を通じてサブマップ間の相対ループエッジの制約を直接計算することで、従来のグローバルからローカルのポイントクラウドの登録よりも効率と精度が向上する。
堅牢なポーズグラフ最適化の定式化を使用し、グローバルな一貫性を達成するためにサブマップを厳格に整列する。
合成Replicaおよび実世界のTUM-RGBD、ScanNet、ScanNet++データセットの評価は、RGB-D SLAMの既存の方法と比較して、競合的あるいは優れた追跡、マッピング、レンダリングを示している。
コードは loopsplat.github.io で入手できる。
関連論文リスト
- Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels [51.08794269211701]
本稿では,ガウスカーネルを線形カーネルに置き換えて,よりシャープで高精度な結果を得る3Dリニアスティング(DLS)を提案する。
3DLSは、最先端の忠実さと正確さを示し、ベースライン3DGSよりも30%のFPS改善を実現している。
論文 参考訳(メタデータ) (2024-11-19T11:59:54Z) - GSplatLoc: Grounding Keypoint Descriptors into 3D Gaussian Splatting for Improved Visual Localization [1.4466437171584356]
3D Gaussian Splatting (3DGS) は、空間的特徴を持つ3次元幾何学とシーンの外観の両方をコンパクトに符号化することができる。
モデルの空間的理解を改善するために,高密度キーポイント記述子を3DGSに蒸留することを提案する。
提案手法はNeRFMatchやPNeRFLocなど,最先端のニューラル・レンダー・ポース(NRP)法を超越した手法である。
論文 参考訳(メタデータ) (2024-09-24T23:18:32Z) - IG-SLAM: Instant Gaussian SLAM [6.228980850646457]
3D Gaussian SplattingはSLAMシステムにおける代替シーン表現として期待できる結果を示した。
本稿では,RGBのみの高密度SLAMシステムであるIG-SLAMについて述べる。
我々は、最先端のRGBのみのSLAMシステムと競合する性能を示し、高速な動作速度を実現する。
論文 参考訳(メタデータ) (2024-08-02T09:07:31Z) - Splat-SLAM: Globally Optimized RGB-only SLAM with 3D Gaussians [87.48403838439391]
3D Splattingは、RGBのみの高密度SLAMの幾何学と外観の強力な表現として登場した。
本稿では,高密度な3次元ガウス写像表現を持つRGBのみのSLAMシステムを提案する。
Replica、TUM-RGBD、ScanNetのデータセットに対する実験は、グローバルに最適化された3Dガウスの有効性を示している。
論文 参考訳(メタデータ) (2024-05-26T12:26:54Z) - GlORIE-SLAM: Globally Optimized RGB-only Implicit Encoding Point Cloud SLAM [53.6402869027093]
フレキシブルなニューラルポイントクラウド表現シーンを用いたRGBのみの高密度SLAMシステムを提案する。
また,単分子深度とともに暗黙のポーズと深さを最適化する新しいDSPO層を導入する。
論文 参考訳(メタデータ) (2024-03-28T16:32:06Z) - 3DGS-ReLoc: 3D Gaussian Splatting for Map Representation and Visual ReLocalization [13.868258945395326]
本稿では,3次元ガウススプラッティングを用いた3次元マッピングと視覚的再局在のための新しいシステムを提案する。
提案手法は、LiDARとカメラデータを用いて、環境の正確な視覚的表現を生成する。
論文 参考訳(メタデータ) (2024-03-17T23:06:12Z) - Loopy-SLAM: Dense Neural SLAM with Loop Closures [53.11936461015725]
ポーズをグローバルに最適化するLoopy-SLAMと高密度3Dモデルを導入する。
我々は,データ駆動のポイントベースサブマップ生成手法を用いてフレーム・ツー・モデル追跡を行い,グローバルな位置認識を行うことで,オンラインのループクロージャをトリガーする。
合成Replicaおよび実世界のTUM-RGBDおよびScanNetデータセットの評価は、既存の高密度ニューラルネットワークRGBD SLAM法と比較して、追跡、マッピング、レンダリングの精度の競争力または優れた性能を示す。
論文 参考訳(メタデータ) (2024-02-14T18:18:32Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z) - CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds [55.44204039410225]
本稿では,CAGroup3Dという新しい2段階完全スパース3Dオブジェクト検出フレームワークを提案する。
提案手法は,まず,オブジェクト表面のボクセル上でのクラス認識型局所群戦略を活用することによって,高品質な3D提案を生成する。
不正なボクセルワイドセグメンテーションにより欠落したボクセルの特徴を回復するために,完全にスパースな畳み込み型RoIプールモジュールを構築した。
論文 参考訳(メタデータ) (2022-10-09T13:38:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。