Balancing Innovation and Ethics in AI-Driven Software Development
- URL: http://arxiv.org/abs/2408.10252v1
- Date: Sat, 10 Aug 2024 14:11:22 GMT
- Title: Balancing Innovation and Ethics in AI-Driven Software Development
- Authors: Mohammad Baqar,
- Abstract summary: This paper critically examines the ethical implications of integrating AI tools like GitHub Copilot and ChatGPT into the software development process.
It explores issues such as code ownership, bias, accountability, privacy, and the potential impact on the job market.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper critically examines the ethical implications of integrating AI tools like GitHub Copilot and ChatGPT into the software development process. It explores issues such as code ownership, bias, accountability, privacy, and the potential impact on the job market. While these AI tools offer significant benefits in terms of productivity and efficiency, they also introduce complex ethical challenges. The paper argues that addressing these challenges is essential to ensuring that AI's integration into software development is both responsible and beneficial to society
Related papers
- $\textit{"I Don't Use AI for Everything"}$: Exploring Utility, Attitude, and Responsibility of AI-empowered Tools in Software Development [19.851794567529286]
This study investigates the adoption, impact, and security considerations of AI-empowered tools in the software development process.
Our findings reveal widespread adoption of AI tools across various stages of software development.
arXiv Detail & Related papers (2024-09-20T09:17:10Z) - Artificial Intelligence in Industry 4.0: A Review of Integration Challenges for Industrial Systems [45.31340537171788]
Cyber-Physical Systems (CPS) generate vast data sets that can be leveraged by Artificial Intelligence (AI) for applications including predictive maintenance and production planning.
Despite the demonstrated potential of AI, its widespread adoption in sectors like manufacturing remains limited.
arXiv Detail & Related papers (2024-05-28T20:54:41Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Exploring the intersection of Generative AI and Software Development [0.0]
The synergy between generative AI and Software Engineering emerges as a transformative frontier.
This whitepaper delves into the unexplored realm, elucidating how generative AI techniques can revolutionize software development.
It serves as a guide for stakeholders, urging discussions and experiments in the application of generative AI in Software Engineering.
arXiv Detail & Related papers (2023-12-21T19:23:23Z) - Responsible Design Patterns for Machine Learning Pipelines [10.184056098238765]
AI ethics involves applying ethical principles to the entire life cycle of AI systems.
This is essential to mitigate potential risks and harms associated with AI, such as biases.
To achieve this goal, responsible design patterns (RDPs) are critical for Machine Learning (ML) pipelines.
arXiv Detail & Related papers (2023-05-31T15:47:12Z) - Comparing Software Developers with ChatGPT: An Empirical Investigation [0.0]
This paper conducts an empirical investigation, contrasting the performance of software engineers and AI systems, like ChatGPT, across different evaluation metrics.
The paper posits that a comprehensive comparison of software engineers and AI-based solutions, considering various evaluation criteria, is pivotal in fostering human-machine collaboration.
arXiv Detail & Related papers (2023-05-19T17:25:54Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
Large-scale software development has become a highly collaborative endeavour.
This chapter explores the ecosystems of development bots and GitHub Actions.
It provides an extensive survey of the state-of-the-art in this domain.
arXiv Detail & Related papers (2023-05-08T15:24:23Z) - An Ethical Framework for Guiding the Development of Affectively-Aware
Artificial Intelligence [0.0]
We propose guidelines for evaluating the (moral and) ethical consequences of affectively-aware AI.
We propose a multi-stakeholder analysis framework that separates the ethical responsibilities of AI Developers vis-a-vis the entities that deploy such AI.
We end with recommendations for researchers, developers, operators, as well as regulators and law-makers.
arXiv Detail & Related papers (2021-07-29T03:57:53Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
We argue that ethical considerations need to be embedded into the (agile) software development process.
We put emphasis on the possibility to implement ethical deliberations in already existing and well established agile software development processes.
arXiv Detail & Related papers (2021-07-15T11:14:03Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.