Past, Present and Future: Exploring Adaptive AI in Software Development Bots
- URL: http://arxiv.org/abs/2507.10822v1
- Date: Mon, 14 Jul 2025 21:40:03 GMT
- Title: Past, Present and Future: Exploring Adaptive AI in Software Development Bots
- Authors: Omar Elsisi, Glaucia Melo,
- Abstract summary: This paper examines the role of adaptive AI-powered conversational agents in software development.<n>We look at how these tools have evolved from simple query-based systems to advanced AI-driven solutions like GitHub Copilot and Microsoft Teams bots.<n>The study aims to assess the benefits and limitations of these systems, address concerns like data privacy and ethical issues, and offer insights into their future use in the field.
- Score: 3.2228025627337864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversational agents, such as chatbots and virtual assistants, have become essential in software development, boosting productivity, collaboration, and automating various tasks. This paper examines the role of adaptive AI-powered conversational agents in software development, highlighting their ability to offer dynamic, context-aware assistance to developers. Unlike traditional rule-based systems, adaptive AI agents use machine learning and natural language processing to learn from interactions and improve over time, providing more personalized and responsive help. We look at how these tools have evolved from simple query-based systems to advanced AI-driven solutions like GitHub Copilot and Microsoft Teams bots. We also explore the challenges of integrating adaptive AI into software development processes. The study aims to assess the benefits and limitations of these systems, address concerns like data privacy and ethical issues, and offer insights into their future use in the field. Ultimately, adaptive AI chatbots have great potential to revolutionize software development by delivering real-time, customized support and enhancing the efficiency of development cycles.
Related papers
- Code with Me or for Me? How Increasing AI Automation Transforms Developer Workflows [66.1850490474361]
We conduct the first academic study to explore developer interactions with coding agents.<n>We evaluate two leading copilot and agentic coding assistants, GitHub Copilot and OpenHands.<n>Our results show agents have the potential to assist developers in ways that surpass copilots.
arXiv Detail & Related papers (2025-07-10T20:12:54Z) - Multi-agent Embodied AI: Advances and Future Directions [46.23631919950584]
Embodied artificial intelligence (Embodied AI) plays a pivotal role in the application of advanced technologies in the intelligent era.<n>This paper reviews the current state of research, analyzes key contributions, and identifies challenges and future directions.
arXiv Detail & Related papers (2025-05-08T10:13:53Z) - Explainability for Embedding AI: Aspirations and Actuality [1.8130068086063336]
Explainable AI (XAI) may allow developers to understand better the systems they build.<n>Existing XAI systems still fall short of this aspiration.<n>We see an unmet need to provide developers with adequate support mechanisms to cope with this complexity.
arXiv Detail & Related papers (2025-04-20T14:20:01Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness.<n>The research, design, deployment, and availability of such AI systems have prompted growing concerns about a wide range of possible legal, ethical, and other social impacts.
arXiv Detail & Related papers (2025-03-04T03:55:38Z) - How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering [8.65285948382426]
We propose a taxonomy of interaction types between developers and AI tools, identifying eleven distinct interaction types.<n>Building on this taxonomy, we outline a research agenda focused on optimizing AI interactions, improving developer control, and addressing trust and usability challenges in AI-assisted development.
arXiv Detail & Related papers (2025-01-15T12:53:49Z) - Overview of AI and Communication for 6G Network: Fundamentals, Challenges, and Future Research Opportunities [148.601430677814]
This paper presents a comprehensive overview of AI and communication for 6G networks.<n>We first review the driving factors behind incorporating AI into wireless communications, as well as the vision for the convergence of AI and 6G.<n>The discourse then transitions to a detailed exposition of the envisioned integration of AI within 6G networks.
arXiv Detail & Related papers (2024-12-19T05:36:34Z) - Programming with AI: Evaluating ChatGPT, Gemini, AlphaCode, and GitHub Copilot for Programmers [0.0]
This study presents a thorough evaluation of leading programming assistants, including ChatGPT, Gemini(Bard AI), AlphaCode, and GitHub Copilot.
It emphasizes the need for ethical developmental practices to actualize AI models' full potential.
arXiv Detail & Related papers (2024-11-14T06:40:55Z) - Building Living Software Systems with Generative & Agentic AI [2.2481284426718533]
Current software systems are static and inflexible, leading to challenges in translating human goals into computational actions.
"Living software systems" powered by generative AI offer a solution to this fundamental problem in computing.
Generative AI, particularly large language models, can serve as a universal translator between human intent and computer operations.
arXiv Detail & Related papers (2024-08-03T12:35:30Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - Making Software Development More Diverse and Inclusive: Key Themes, Challenges, and Future Directions [50.545824691484796]
We identify six themes around the theme challenges and opportunities to improve Software Developer Diversity and Inclusion (SDDI)<n>We identify benefits, harms, and future research directions for the four main themes.<n>We discuss the remaining two themes, Artificial Intelligence & SDDI and AI & Computer Science education, which have a cross-cutting effect on the other themes.
arXiv Detail & Related papers (2024-04-10T16:18:11Z) - Exploring the intersection of Generative AI and Software Development [0.0]
The synergy between generative AI and Software Engineering emerges as a transformative frontier.
This whitepaper delves into the unexplored realm, elucidating how generative AI techniques can revolutionize software development.
It serves as a guide for stakeholders, urging discussions and experiments in the application of generative AI in Software Engineering.
arXiv Detail & Related papers (2023-12-21T19:23:23Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - Automated Machine Learning: A Case Study on Non-Intrusive Appliance Load Monitoring [81.06807079998117]
We propose a novel approach to enable Automated Machine Learning (AutoML) for Non-Intrusive Appliance Load Monitoring (NIALM)<n>NIALM offers a cost-effective alternative to smart meters for measuring the energy consumption of electric devices and appliances.
arXiv Detail & Related papers (2022-03-06T10:12:56Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.