論文の概要: Kolmogorov Arnold Networks in Fraud Detection: Bridging the Gap Between Theory and Practice
- arxiv url: http://arxiv.org/abs/2408.10263v2
- Date: Tue, 3 Sep 2024 22:23:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 19:18:56.575332
- Title: Kolmogorov Arnold Networks in Fraud Detection: Bridging the Gap Between Theory and Practice
- Title(参考訳): Kolmogorov Arnold Networks in Fraud Detection: Bridging the Gap between Theory and Practice
- Authors: Yang Lu, Felix Zhan,
- Abstract要約: 本研究では,コルモゴロフ・アルノルドネットワーク(KAN)の不正検出への適用性を検討した。
そこで本研究では,PCA(Principal Component Analysis, 主成分分析)を用いて,データをスプラインを用いて2次元に分割する手法を提案する。
- 参考スコア(独自算出の注目度): 3.692410936160711
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study evaluates the applicability of Kolmogorov-Arnold Networks (KAN) in fraud detection, finding that their effectiveness is context-dependent. We propose a quick decision rule using Principal Component Analysis (PCA) to assess the suitability of KAN: if data can be effectively separated in two dimensions using splines, KAN may outperform traditional models; otherwise, other methods could be more appropriate. We also introduce a heuristic approach to hyperparameter tuning, significantly reducing computational costs. These findings suggest that while KAN has potential, its use should be guided by data-specific assessments.
- Abstract(参考訳): 本研究では,コルモゴロフ・アルノルドネットワーク(KAN)の不正検出への適用性を検討した。
そこで本研究では,PCA(Principal Component Analysis, 主成分分析)を用いて,データをスプラインを用いて2次元に分割する手法を提案する。
また、ハイパーパラメータチューニングに対するヒューリスティックなアプローチを導入し、計算コストを大幅に削減する。
これらの結果から,kanにはポテンシャルがあるものの,その使用法はデータ固有の評価によって導かれることが示唆された。
関連論文リスト
- CoRMF: Criticality-Ordered Recurrent Mean Field Ising Solver [4.364088891019632]
我々は、RNNに基づく効率的なIsingモデル解法、Criticality-ordered Recurrent Mean Field (CoRMF)を提案する。
基礎となるIsingグラフの近似木構造を利用することで、新しく得られた臨界度順序は、変動平均場とRNNの統一を可能にする。
CoRFMはデータ/証拠のない自己学習方式でIsing問題を解き、RNNから直接サンプリングすることで推論タスクを実行することができる。
論文 参考訳(メタデータ) (2024-03-05T16:55:06Z) - Sample-Efficient Clustering and Conquer Procedures for Parallel
Large-Scale Ranking and Selection [0.0]
並列コンピューティング環境では、相関ベースのクラスタリングは$mathcalO(p)$サンプル複雑性低減率を達成することができる。
ニューラルアーキテクチャ検索のような大規模AIアプリケーションでは、スクリーニングなしバージョンの手順が、サンプル効率の点で完全に順序づけられたベンチマークを驚くほど上回っている。
論文 参考訳(メタデータ) (2024-02-03T15:56:03Z) - Spatial-temporal-demand clustering for solving large-scale vehicle
routing problems with time windows [0.0]
本稿では,クラスタリングを用いて顧客をグループ化するDRI(Decompose-route-improve)フレームワークを提案する。
その類似度基準は、顧客の空間的、時間的、需要データを含む。
本研究では,解答サブプロブレム間でプルーンド局所探索(LS)を適用し,全体の解法を改善する。
論文 参考訳(メタデータ) (2024-01-20T06:06:01Z) - Tune As You Scale: Hyperparameter Optimization For Compute Efficient
Training [0.0]
そこで本研究では,大規模モデルのロバストなチューニング手法を提案する。
CarBSはパフォーマンスコストフロンティアの周辺でローカル検索を行う。
その結果、単純なベースラインをチューニングするだけで、ProcGenベンチマーク全体を効果的に解決できることがわかった。
論文 参考訳(メタデータ) (2023-06-13T18:22:24Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
センサローカライゼーションの現実問題において,ネットワークトポロジと異なるアルゴリズムの収束率の関係について検討する。
また、ADMMと持ち上げマルコフ連鎖の間の興味深い関係を示すとともに、その収束を明示的に特徴づける。
論文 参考訳(メタデータ) (2020-09-05T21:44:39Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
バイパルタイトbマッチングはアルゴリズム設計の基本であり、経済市場や労働市場などに広く適用されている。
既存の正確で近似的なアルゴリズムは、通常そのような設定で失敗する。
我々は、以前の事例から学んだ知識を活用して、新しい問題インスタンスを解決するtextttNeuSearcherを提案する。
論文 参考訳(メタデータ) (2020-05-09T02:48:23Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
サンプルサブネットワークの性能に適合するグラフ畳み込みネットワークを訓練する。
この戦略により、選択された候補集合において、より高いランク相関係数が得られる。
論文 参考訳(メタデータ) (2020-04-17T19:12:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。