FedKBP: Federated dose prediction framework for knowledge-based planning in radiation therapy
- URL: http://arxiv.org/abs/2408.10275v1
- Date: Sat, 17 Aug 2024 14:57:14 GMT
- Title: FedKBP: Federated dose prediction framework for knowledge-based planning in radiation therapy
- Authors: Jingyun Chen, Martin King, Yading Yuan,
- Abstract summary: Dose prediction plays a key role in knowledge-based planning (KBP) by automatically generating patient-specific dose distribution.
Recent advances in deep learning-based dose prediction methods necessitates collaboration among data contributors for improved performance.
Federation learning (FL) has emerged as a solution, enabling medical centers to jointly train deep-learning models without compromising patient data privacy.
- Score: 0.5575343193009424
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Dose prediction plays a key role in knowledge-based planning (KBP) by automatically generating patient-specific dose distribution. Recent advances in deep learning-based dose prediction methods necessitates collaboration among data contributors for improved performance. Federated learning (FL) has emerged as a solution, enabling medical centers to jointly train deep-learning models without compromising patient data privacy. We developed the FedKBP framework to evaluate the performances of centralized, federated, and individual (i.e. separated) training of dose prediction model on the 340 plans from OpenKBP dataset. To simulate FL and individual training, we divided the data into 8 training sites. To evaluate the effect of inter-site data variation on model training, we implemented two types of case distributions: 1) Independent and identically distributed (IID), where the training and validating cases were evenly divided among the 8 sites, and 2) non-IID, where some sites have more cases than others. The results show FL consistently outperforms individual training on both model optimization speed and out-of-sample testing scores, highlighting the advantage of FL over individual training. Under IID data division, FL shows comparable performance to centralized training, underscoring FL as a promising alternative to traditional pooled-data training. Under non-IID division, larger sites outperformed smaller sites by up to 19% on testing scores, confirming the need of collaboration among data owners to achieve better prediction accuracy. Meanwhile, non-IID FL showed reduced performance as compared to IID FL, posing the need for more sophisticated FL method beyond mere model averaging to handle data variation among participating sites.
Related papers
- Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? [50.03434441234569]
Federated Learning (FL) has gained significant popularity due to its effectiveness in training machine learning models across diverse sites without requiring direct data sharing.
While various algorithms have shown that FL with local updates is a communication-efficient distributed learning framework, the generalization performance of FL with local updates has received comparatively less attention.
arXiv Detail & Related papers (2024-09-05T19:00:18Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
We introduce an innovative personalized Federated Learning framework, Multi-level Personalized Federated Learning (MuPFL)
MuPFL integrates three pivotal modules: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU) and Prior Knowledge-assisted Fine-tuning (PKCF)
Experiments on diverse real-world datasets show that MuPFL consistently outperforms state-of-the-art baselines, even under extreme non-i.i.d. and long-tail conditions.
arXiv Detail & Related papers (2024-05-10T11:52:53Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - DPP-based Client Selection for Federated Learning with Non-IID Data [97.1195165400568]
This paper proposes a client selection (CS) method to tackle the communication bottleneck of federated learning (FL)
We first analyze the effect of CS in FL and show that FL training can be accelerated by adequately choosing participants to diversify the training dataset in each round of training.
We leverage data profiling and determinantal point process (DPP) sampling techniques to develop an algorithm termed Federated Learning with DPP-based Participant Selection (FL-DP$3$S)
arXiv Detail & Related papers (2023-03-30T13:14:54Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - FedDM: Iterative Distribution Matching for Communication-Efficient
Federated Learning [87.08902493524556]
Federated learning(FL) has recently attracted increasing attention from academia and industry.
We propose FedDM to build the global training objective from multiple local surrogate functions.
In detail, we construct synthetic sets of data on each client to locally match the loss landscape from original data.
arXiv Detail & Related papers (2022-07-20T04:55:18Z) - Adaptive Personlization in Federated Learning for Highly Non-i.i.d. Data [37.667379000751325]
Federated learning (FL) is a distributed learning method that offers medical institutes the prospect of collaboration in a global model.
In this work, we investigate an adaptive hierarchical clustering method for FL to produce intermediate semi-global models.
Our experiments demonstrate significant performance gain in heterogeneous distribution compared to standard FL methods in classification accuracy.
arXiv Detail & Related papers (2022-07-07T17:25:04Z) - An Empirical Study on Distribution Shift Robustness From the Perspective
of Pre-Training and Data Augmentation [91.62129090006745]
This paper studies the distribution shift problem from the perspective of pre-training and data augmentation.
We provide the first comprehensive empirical study focusing on pre-training and data augmentation.
arXiv Detail & Related papers (2022-05-25T13:04:53Z) - Label-Efficient Self-Supervised Federated Learning for Tackling Data
Heterogeneity in Medical Imaging [23.08596805950814]
We present a robust and label-efficient self-supervised FL framework for medical image analysis.
Specifically, we introduce a novel distributed self-supervised pre-training paradigm into the existing FL pipeline.
We show that our self-supervised FL algorithm generalizes well to out-of-distribution data and learns federated models more effectively in limited label scenarios.
arXiv Detail & Related papers (2022-05-17T18:33:43Z) - Prototype Guided Federated Learning of Visual Feature Representations [15.021124010665194]
Federated Learning (FL) is a framework which enables distributed model training using a large corpus of decentralized training data.
Existing methods aggregate models disregarding their internal representations, which are crucial for training models in vision tasks.
We introduce FedProto, which computes client deviations using margins of representations learned on distributed data.
arXiv Detail & Related papers (2021-05-19T08:29:12Z) - Improving Accuracy of Federated Learning in Non-IID Settings [11.908715869667445]
Federated Learning (FL) is a decentralized machine learning protocol that allows a set of participating agents to collaboratively train a model without sharing their data.
It has been observed that the performance of FL is closely tied with the local data distributions of agents.
In this work, we identify four simple techniques that can improve the performance of trained models without incurring any additional communication overhead to FL.
arXiv Detail & Related papers (2020-10-14T21:02:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.