SDE-based Multiplicative Noise Removal
- URL: http://arxiv.org/abs/2408.10283v2
- Date: Wed, 4 Sep 2024 15:36:52 GMT
- Title: SDE-based Multiplicative Noise Removal
- Authors: An Vuong, Thinh Nguyen,
- Abstract summary: Multiplicative noise affects images produced by synthetic aperture radar (SAR), lasers, or optical lenses.
We propose a novel approach using Differential Equations based diffusion models to address multiplicative noise.
- Score: 6.985808221697239
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multiplicative noise, also known as speckle or pepper noise, commonly affects images produced by synthetic aperture radar (SAR), lasers, or optical lenses. Unlike additive noise, which typically arises from thermal processes or external factors, multiplicative noise is inherent to the system, originating from the fluctuation in diffuse reflections. These fluctuations result in multiple copies of the same signal with varying magnitudes being combined. Consequently, despeckling, or removing multiplicative noise, necessitates different techniques compared to those used for additive noise removal. In this paper, we propose a novel approach using Stochastic Differential Equations based diffusion models to address multiplicative noise. We demonstrate that multiplicative noise can be effectively modeled as a Geometric Brownian Motion process in the logarithmic domain. Utilizing the Fokker-Planck equation, we derive the corresponding reverse process for image denoising. To validate our method, we conduct extensive experiments on two different datasets, comparing our approach to both classical signal processing techniques and contemporary CNN-based noise removal models. Our results indicate that the proposed method significantly outperforms existing methods on perception-based metrics such as FID and LPIPS, while maintaining competitive performance on traditional metrics like PSNR and SSIM.
Related papers
- Blue noise for diffusion models [50.99852321110366]
We introduce a novel and general class of diffusion models taking correlated noise within and across images into account.
Our framework allows introducing correlation across images within a single mini-batch to improve gradient flow.
We perform both qualitative and quantitative evaluations on a variety of datasets using our method.
arXiv Detail & Related papers (2024-02-07T14:59:25Z) - Diffusion Models With Learned Adaptive Noise [12.530583016267768]
In this paper, we explore whether the diffusion process can be learned from data.
A widely held assumption is that the ELBO is invariant to the noise process.
We propose MULAN, a learned diffusion process that applies noise at different rates across an image.
arXiv Detail & Related papers (2023-12-20T18:00:16Z) - Denoising Diffusion Bridge Models [54.87947768074036]
Diffusion models are powerful generative models that map noise to data using processes.
For many applications such as image editing, the model input comes from a distribution that is not random noise.
In our work, we propose Denoising Diffusion Bridge Models (DDBMs)
arXiv Detail & Related papers (2023-09-29T03:24:24Z) - Towards General Low-Light Raw Noise Synthesis and Modeling [37.87312467017369]
We introduce a new perspective to synthesize the signal-independent noise by a generative model.
Specifically, we synthesize the signal-dependent and signal-independent noise in a physics- and learning-based manner.
In this way, our method can be considered as a general model, that is, it can simultaneously learn different noise characteristics for different ISO levels.
arXiv Detail & Related papers (2023-07-31T09:10:10Z) - A Novel Truncated Norm Regularization Method for Multi-channel Color
Image Denoising [5.624787484101139]
This paper is proposed to denoise color images with a double-weighted truncated nuclear norm minus truncated Frobenius norm minimization (DtNFM) method.
Through exploiting the nonlocal self-similarity of the noisy image, the similar structures are gathered and a series of similar patch matrices are constructed.
Experiments on synthetic and real noise datasets demonstrate that the proposed method outperforms many state-of-the-art color image denoising methods.
arXiv Detail & Related papers (2023-07-16T03:40:35Z) - Representing Noisy Image Without Denoising [91.73819173191076]
Fractional-order Moments in Radon space (FMR) is designed to derive robust representation directly from noisy images.
Unlike earlier integer-order methods, our work is a more generic design taking such classical methods as special cases.
arXiv Detail & Related papers (2023-01-18T10:13:29Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Poisson2Sparse: Self-Supervised Poisson Denoising From a Single Image [34.27748767631027]
We present a novel self-supervised learning method for single-image denoising.
We approximate traditional iterative optimization algorithms for image denoising with a recurrent neural network.
Our method outperforms the state-of-the-art approaches in terms of PSNR and SSIM.
arXiv Detail & Related papers (2022-06-04T00:08:58Z) - Multiview point cloud registration with anisotropic and space-varying
localization noise [1.5499426028105903]
We address the problem of registering multiple point clouds corrupted with high anisotropic localization noise.
Existing methods are based on an implicit assumption of space-invariant isotropic noise.
We show that our noise handling strategy improves significantly the robustness to high levels of anisotropic noise.
arXiv Detail & Related papers (2022-01-03T15:21:24Z) - Rethinking Noise Synthesis and Modeling in Raw Denoising [75.55136662685341]
We introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise.
It inherently generates accurate raw image noise for different camera sensors.
arXiv Detail & Related papers (2021-10-10T10:45:24Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.