Quantum scars in many-body systems
- URL: http://arxiv.org/abs/2408.10301v1
- Date: Mon, 19 Aug 2024 18:00:00 GMT
- Title: Quantum scars in many-body systems
- Authors: Andrea Pizzi, Bertrand Evrard, Ceren B. Dag, Johannes Knolle,
- Abstract summary: We show that quantum mechanics hinders chaos in many-body systems.
Although the quantum eigenstates are thermal and strongly entangled, exponentially many of them are scarred.
Scarring makes the system more likely to be found on an orbit it was on, retaining a memory of its past and thus weakly breaking ergodicity.
- Score: 28.32223907511862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Chaos makes isolated systems of many interacting particles quickly thermalize and forget about their past. Here, we show that quantum mechanics hinders chaos in many-body systems: although the quantum eigenstates are thermal and strongly entangled, exponentially many of them are scarred, that is, have an enlarged weight along underlying classical unstable periodic orbits. Scarring makes the system more likely to be found on an orbit it was initialized on, retaining a memory of its past and thus weakly breaking ergodicity, even at long times and despite the system being fully thermal. We demonstrate the ubiquity of quantum scarring in many-body systems by considering a large family of spin models, including some of the most popular ones from condensed matter physics. Our findings, at hand for modern quantum simulators, prove structure in spite of chaos in many-body quantum systems.
Related papers
- Direct Visualization of Relativistic Quantum Scars [0.15937412565239586]
Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits (POs)
First predicted 40 years ago, scars are special eigenstates that defy ergodicity in quantum systems whose classical counterpart is chaotic.
arXiv Detail & Related papers (2024-09-16T19:18:48Z) - Observation of quantum thermalization restricted to Hilbert space fragments [0.0]
Out-of-equilibrium quantum systems have long been understood to either thermalize or retain memory of their initial states, but not both.
Here we achieve the first coexistence of thermalization and memory in a quantum system.
Results may be applied to control entanglement dynamics in quantum processors and quantum sensors.
arXiv Detail & Related papers (2024-03-14T16:01:26Z) - Quantum many-body scars from unstable periodic orbits [30.38539960317671]
Unstable periodic orbits play a key role in the theory of chaos.
We find the first quantum many-body scars originating from UPOs of a chaotic phase space.
arXiv Detail & Related papers (2024-01-12T19:00:02Z) - Quantum Lyapunov exponent in dissipative systems [68.8204255655161]
The out-of-time order correlator (OTOC) has been widely studied in closed quantum systems.
We study the interplay between these two processes.
The OTOC decay rate is closely related to the classical Lyapunov.
arXiv Detail & Related papers (2022-11-11T17:06:45Z) - Quantum scar affecting the motion of three interacting particles in a
circular trap [0.0]
We numerically calculate the quantum eigenstates of the system and show that some of them are scarred by a classically unstable periodic trajectory.
Unlike the many-body scars demonstrated experimentally up to now, whose classical analogs do not thermalize, the scar we consider is stabilized by quantum mechanics.
arXiv Detail & Related papers (2022-10-02T09:57:29Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Ubiquitous quantum scarring does not prevent ergodicity [0.0]
In a classically chaotic system that is ergodic, any trajectory will be arbitrarily close to any point of the available phase space after a long time.
This simplified picture was shaken by the discovery of quantum scarring.
Our results show instead that all eigenstates of the chaotic Dicke model are actually scarred.
arXiv Detail & Related papers (2020-09-01T18:00:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.