Direct Visualization of Relativistic Quantum Scars
- URL: http://arxiv.org/abs/2409.10675v1
- Date: Mon, 16 Sep 2024 19:18:48 GMT
- Title: Direct Visualization of Relativistic Quantum Scars
- Authors: Zhehao Ge, Anton M. Graf, Joonas Keski-Rahkonen, Sergey Slizovskiy, Peter Polizogopoulos, Takashi Taniguchi, Kenji Watanabe, Ryan Van Haren, David Lederman, Vladimir I. Fal'ko, Eric J. Heller, Jairo Velasco Jr,
- Abstract summary: Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits (POs)
First predicted 40 years ago, scars are special eigenstates that defy ergodicity in quantum systems whose classical counterpart is chaotic.
- Score: 0.15937412565239586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits (POs). First predicted 40 years ago, scars are special eigenstates that counterintuitively defy ergodicity in quantum systems whose classical counterpart is chaotic. Despite the importance and long history of scars, their direct visualization in quantum systems remains an open field. Here we demonstrate that, by using an in-situ graphene quantum dot (GQD) creation and wavefunction mapping technique, quantum scars are imaged for Dirac electrons with nanometer spatial resolution and meV energy resolution with a scanning tunneling microscope. Specifically, we find enhanced probability densities in the form of lemniscate-shaped and streak-like patterns within our stadium-shaped GQDs. Both features show equal energy interval recurrence, consistent with predictions for relativistic quantum scars. By combining classical and quantum simulations, we demonstrate that the observed patterns correspond to two unstable POs that exist in our stadium-shaped GQD, thus proving they are both quantum scars. In addition to providing the first unequivocal visual evidence of quantum scarring, our work offers insight into the quantum-classical correspondence in relativistic chaotic quantum systems and paves the way to experimental investigation of other recently proposed scarring species such as perturbation-induced scars, chiral scars, and antiscarring.
Related papers
- Exploring the properties of quantum scars in a toy model [0.0]
We introduce the concept of ergodicity and explore its deviation caused by quantum scars in an isolated quantum system.
Quantum scars, originally identified as traces of classically unstable orbits in certain wavefunctions of chaotic systems, have recently regained interest for their role in non-ergodic dynamics.
arXiv Detail & Related papers (2024-11-05T16:31:08Z) - Variational Scarring in Graphene Quantum Dots [0.0]
We show that variational scarring can occur in an elliptical quantum dot fabricated on monolayer graphene.
We also show that the fingerprint of these variational scars can potentially be detected via scanning tunneling microscopy.
arXiv Detail & Related papers (2024-10-17T02:26:58Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Antiscarring in Chaotic Quantum Wells [0.0]
We study the scarring of a single-particle wavefunction, where the quantum probability density is enhanced in the vicinity of a classical periodic orbit.
These quantum scars illustrate the quantum suppression of classical chaos, offering a unique way to explore the classical-quantum relationship beyond conventional limits.
arXiv Detail & Related papers (2024-03-26T20:06:00Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Discrete time-crystalline order enabled by quantum many-body scars:
entanglement steering via periodic driving [0.0]
We show that coherent revivals associated with quantum many-body scars can be stabilized by periodic driving.
Our results suggest a route to controlling entanglement in quantum systems by combining periodic driving with many-body scars.
arXiv Detail & Related papers (2021-02-25T20:41:47Z) - Orthogonal Quantum Many-body Scars [0.41998444721319206]
Quantum many-body scars have been put forward as counterexamples to the Eigenstate Thermalization Hypothesis.
Our example provides new insights into the link between quantum ergodicity and many-body entanglement.
arXiv Detail & Related papers (2021-02-15T16:59:35Z) - Exact many-body scars and their stability in constrained quantum chains [55.41644538483948]
Quantum scars are non-thermal eigenstates characterized by low entanglement entropy.
We study the response of these exact quantum scars to perturbations by analysing the scaling of the fidelity susceptibility with system size.
arXiv Detail & Related papers (2020-11-16T19:05:50Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z) - Entropic Uncertainty Relations and the Quantum-to-Classical transition [77.34726150561087]
We aim to shed some light on the quantum-to-classical transition as seen through the analysis of uncertainty relations.
We employ entropic uncertainty relations to show that it is only by the inclusion of imprecision in our model of macroscopic measurements that we can prepare a system with two simultaneously well-defined quantities.
arXiv Detail & Related papers (2020-03-04T14:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.