A single spin in hexagonal boron nitride for vectorial quantum magnetometry
- URL: http://arxiv.org/abs/2408.10348v1
- Date: Mon, 19 Aug 2024 18:40:44 GMT
- Title: A single spin in hexagonal boron nitride for vectorial quantum magnetometry
- Authors: Carmem M. Gilardoni, Simone Eizagirre Barker, Catherine L. Curtin, Stephanie A. Fraser, Oliver. F. J. Powell, Dillon K. Lewis, Xiaoxi Deng, Andrew J. Ramsay, Chi Li, Igor Aharonovich, Hark Hoe Tan, Mete Atatüre, Hannah L. Stern,
- Abstract summary: Quantum sensing based on solid-state spin defects provides a versatile platform for imaging physical properties at the nanoscale.
We show that the individually addressable carbon-related spin defect in hexagonal boron nitride is a multi-axis spin system for vectorial nanoscale magnetometry.
- Score: 1.8341141064456064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum sensing based on solid-state spin defects provides a uniquely versatile platform for imaging physical properties at the nanoscale under diverse environmental conditions. Operation of most sensors used to-date is based on projective measurement along a single axis combined with computational extrapolation. Here, we show that the individually addressable carbon-related spin defect in hexagonal boron nitride is a multi-axis spin system for vectorial nanoscale magnetometry. We demonstrate how its low symmetry and strongly spin-selective direct and reverse intersystem crossing dynamics provide sub-$\mu$T/$\sqrt{\text{Hz}}$ magnetic-field sensitivity for both on and off-axis bias magnetic field exceeding 50 mT. Alongside these features, the room-temperature operation and the nanometer-scale proximity enabled by the van der Waals host material further consolidate this system as an exciting quantum sensing platform.
Related papers
- Spin decoherence in VOPc@graphene nanoribbon complexes [5.691318972818067]
Carbon nanoribbon or nanographene qubit arrays can facilitate quantum-to-quantum transduction between light, charge, and spin.
We study spin decoherence due to coupling with a surrounding nuclear spin bath of an electronic molecular spin of a vanadyl phthalocyanine (VOPc) molecule integrated on an armchair-edged graphene nanoribbon (GNR)
We find that the decoherence time $T$ is anisotropic with respect to magnetic field orientation and determined only by nuclear spins on VOPc and GNR.
arXiv Detail & Related papers (2023-07-31T04:55:05Z) - Quantum sensing via magnetic-noise-protected states in an electronic
spin dyad [0.0]
We investigate the coherent spin dynamics of a hetero-spin system formed by a spin S=1 featuring a non-zero crystal field.
We show that the zero-quantum coherences we create between them can be remarkably long-lived.
These spin dyads could be exploited as nanoscale gradiometers for precision magnetometry or as probes for magnetic-noise-free electrometry and thermal sensing.
arXiv Detail & Related papers (2023-06-29T19:27:17Z) - Control of an environmental spin defect beyond the coherence limit of a central spin [79.16635054977068]
We present a scalable approach to increase the size of electronic-spin registers.
We experimentally realize this approach to demonstrate the detection and coherent control of an unknown electronic spin outside the coherence limit of a central NV.
Our work paves the way for engineering larger quantum spin registers with the potential to advance nanoscale sensing, enable correlated noise spectroscopy for error correction, and facilitate the realization of spin-chain quantum wires for quantum communication.
arXiv Detail & Related papers (2023-06-29T17:55:16Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Spin-helical detection in a semiconductor quantum device with
ferromagnetic contacts [0.024171019220503395]
We show that it is possible to detect helical modes with high sensitivity even in the presence of realistic device effects, such as quantum interference.
Our results are of interest not only for the ongoing development of Majorana qubits, but also as for realizing possible spin-based quantum devices.
arXiv Detail & Related papers (2021-04-07T03:18:53Z) - Spin emitters beyond the point dipole approximation in nanomagnonic
cavities [0.0]
Control over transition rates between spin states of emitters is crucial in a variety of fields ranging from quantum information science to the nanochemistry of free radicals.
We present an approach to drive a both electric and magnetic dipole-forbidden transition of a spin emitter by placing it in a nanomagnonic cavity.
arXiv Detail & Related papers (2020-12-08T19:00:02Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Sensing of Spin Fluctuations of Magnetic Insulator Films with
Perpendicular Anisotropy [0.0]
Nitrogen vacancy (NV) centers are applied to emerging quantum sensing, imaging, and network efforts.
We report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization.
arXiv Detail & Related papers (2020-09-07T04:24:44Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.