AIR: Analytic Imbalance Rectifier for Continual Learning
- URL: http://arxiv.org/abs/2408.10349v1
- Date: Mon, 19 Aug 2024 18:42:00 GMT
- Title: AIR: Analytic Imbalance Rectifier for Continual Learning
- Authors: Di Fang, Yinan Zhu, Runze Fang, Cen Chen, Ziqian Zeng, Huiping Zhuang,
- Abstract summary: Continual learning enables AI models to learn new data sequentially without retraining in real-world scenarios.
Most existing methods assume the training data are balanced, aiming to reduce the problem that models tend to forget previously generated data.
We propose an analytic imbalance algorithm (AIR) to solve this problem.
- Score: 16.917778190250353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Continual learning enables AI models to learn new data sequentially without retraining in real-world scenarios. Most existing methods assume the training data are balanced, aiming to reduce the catastrophic forgetting problem that models tend to forget previously generated data. However, data imbalance and the mixture of new and old data in real-world scenarios lead the model to ignore categories with fewer training samples. To solve this problem, we propose an analytic imbalance rectifier algorithm (AIR), a novel online exemplar-free continual learning method with an analytic (i.e., closed-form) solution for data-imbalanced class-incremental learning (CIL) and generalized CIL scenarios in real-world continual learning. AIR introduces an analytic re-weighting module (ARM) that calculates a re-weighting factor for each class for the loss function to balance the contribution of each category to the overall loss and solve the problem of imbalanced training data. AIR uses the least squares technique to give a non-discriminatory optimal classifier and its iterative update method in continual learning. Experimental results on multiple datasets show that AIR significantly outperforms existing methods in long-tailed and generalized CIL scenarios. The source code is available at https://github.com/fang-d/AIR.
Related papers
- Attribute-to-Delete: Machine Unlearning via Datamodel Matching [65.13151619119782]
Machine unlearning -- efficiently removing a small "forget set" training data on a pre-divertrained machine learning model -- has recently attracted interest.
Recent research shows that machine unlearning techniques do not hold up in such a challenging setting.
arXiv Detail & Related papers (2024-10-30T17:20:10Z) - Diffusion-Driven Data Replay: A Novel Approach to Combat Forgetting in Federated Class Continual Learning [13.836798036474143]
Key challenge in Federated Class Continual Learning is catastrophic forgetting.
We propose a novel method of data replay based on diffusion models.
Our method significantly outperforms existing baselines.
arXiv Detail & Related papers (2024-09-02T10:07:24Z) - Online Analytic Exemplar-Free Continual Learning with Large Models for Imbalanced Autonomous Driving Task [25.38082751323396]
We propose an Analytic Exemplar-Free Online Continual Learning algorithm (AEF-OCL)
The AEF-OCL leverages analytic continual learning principles and employs ridge regression as a classifier for features extracted by a large backbone network.
Experimental results demonstrate that despite being an exemplar-free strategy, our method outperforms various methods on the autonomous driving SODA10M dataset.
arXiv Detail & Related papers (2024-05-28T03:19:15Z) - Enhancing Consistency and Mitigating Bias: A Data Replay Approach for
Incremental Learning [100.7407460674153]
Deep learning systems are prone to catastrophic forgetting when learning from a sequence of tasks.
To mitigate the problem, a line of methods propose to replay the data of experienced tasks when learning new tasks.
However, it is not expected in practice considering the memory constraint or data privacy issue.
As a replacement, data-free data replay methods are proposed by inverting samples from the classification model.
arXiv Detail & Related papers (2024-01-12T12:51:12Z) - Integrating Local Real Data with Global Gradient Prototypes for
Classifier Re-Balancing in Federated Long-Tailed Learning [60.41501515192088]
Federated Learning (FL) has become a popular distributed learning paradigm that involves multiple clients training a global model collaboratively.
The data samples usually follow a long-tailed distribution in the real world, and FL on the decentralized and long-tailed data yields a poorly-behaved global model.
In this work, we integrate the local real data with the global gradient prototypes to form the local balanced datasets.
arXiv Detail & Related papers (2023-01-25T03:18:10Z) - Deep Regression Unlearning [6.884272840652062]
We introduce deep regression unlearning methods that generalize well and are robust to privacy attacks.
We conduct regression unlearning experiments for computer vision, natural language processing and forecasting applications.
arXiv Detail & Related papers (2022-10-15T05:00:20Z) - Learning from aggregated data with a maximum entropy model [73.63512438583375]
We show how a new model, similar to a logistic regression, may be learned from aggregated data only by approximating the unobserved feature distribution with a maximum entropy hypothesis.
We present empirical evidence on several public datasets that the model learned this way can achieve performances comparable to those of a logistic model trained with the full unaggregated data.
arXiv Detail & Related papers (2022-10-05T09:17:27Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - Variation-Incentive Loss Re-weighting for Regression Analysis on Biased
Data [8.115323786541078]
We aim to improve the accuracy of the regression analysis by addressing the data skewness/bias during model training.
We propose a Variation-Incentive Loss re-weighting method (VILoss) to optimize the gradient descent-based model training for regression analysis.
arXiv Detail & Related papers (2021-09-14T10:22:21Z) - Variational Bayesian Unlearning [54.26984662139516]
We study the problem of approximately unlearning a Bayesian model from a small subset of the training data to be erased.
We show that it is equivalent to minimizing an evidence upper bound which trades off between fully unlearning from erased data vs. not entirely forgetting the posterior belief.
In model training with VI, only an approximate (instead of exact) posterior belief given the full data can be obtained, which makes unlearning even more challenging.
arXiv Detail & Related papers (2020-10-24T11:53:00Z) - Self-Adaptive Training: beyond Empirical Risk Minimization [15.59721834388181]
We propose a new training algorithm that dynamically corrects problematic labels by model predictions without incurring extra computational cost.
Self-adaptive training significantly improves generalization over various levels of noises, and mitigates the overfitting issue in both natural and adversarial training.
Experiments on CIFAR and ImageNet datasets verify the effectiveness of our approach in two applications.
arXiv Detail & Related papers (2020-02-24T15:47:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.