論文の概要: Joint Modeling of Search and Recommendations Via an Unified Contextual Recommender (UniCoRn)
- arxiv url: http://arxiv.org/abs/2408.10394v1
- Date: Mon, 19 Aug 2024 20:26:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 17:43:23.910936
- Title: Joint Modeling of Search and Recommendations Via an Unified Contextual Recommender (UniCoRn)
- Title(参考訳): Unified Contextual Recommender (UniCoRn) を用いた検索とレコメンデーションの統合モデリング
- Authors: Moumita Bhattacharya, Vito Ostuni, Sudarshan Lamkhede,
- Abstract要約: 検索とレコメンデーションシステムは、多くのサービスにおいて不可欠であり、しばしば個別に開発され、複雑な保守と技術的負債につながる。
本稿では,両タスクの重要な側面を効率的に処理する統合型ディープラーニングモデルを提案する。
- 参考スコア(独自算出の注目度): 0.9948530906579709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Search and recommendation systems are essential in many services, and they are often developed separately, leading to complex maintenance and technical debt. In this paper, we present a unified deep learning model that efficiently handles key aspects of both tasks.
- Abstract(参考訳): 検索とレコメンデーションシステムは、多くのサービスにおいて不可欠であり、しばしば個別に開発され、複雑な保守と技術的負債につながる。
本稿では,両タスクの重要な側面を効率的に処理する統合型ディープラーニングモデルを提案する。
関連論文リスト
- Curriculum-scheduled Knowledge Distillation from Multiple Pre-trained Teachers for Multi-domain Sequential Recommendation [102.91236882045021]
現実世界のシステムにおいて、様々な事前学習されたレコメンデーションモデルを効率的に利用する方法について検討することが不可欠である。
多分野連続的な推薦のために,複数の事前学習教師によるカリキュラムスケジューリング型知識蒸留を提案する。
CKD-MDSRは、複数の教師モデルとして異なるPRMの利点を最大限に活用し、小学生推薦モデルを強化している。
論文 参考訳(メタデータ) (2024-01-01T15:57:15Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
重要な側面は、ユーザやアイテムIDといった高次元の離散的な特徴を低次元連続ベクトルに包含する技法である。
埋め込み技術の適用は複雑なエンティティ関係を捉え、かなりの研究を刺激している。
この調査では、協調フィルタリング、自己教師付き学習、グラフベースのテクニックなどの埋め込み手法を取り上げている。
論文 参考訳(メタデータ) (2023-10-28T06:31:06Z) - Towards a Unified Conversational Recommendation System: Multi-task
Learning via Contextualized Knowledge Distillation [5.125530969984795]
統合会話推薦システム(CRS)のためのマルチタスク学習を提案する。
文脈的知識蒸留(ConKD)を用いた単一モデルによる協調学習
実験の結果,1つのモデルでは,適応度を高めながら推奨性能を著しく向上し,多様性の観点からも同等の結果が得られた。
論文 参考訳(メタデータ) (2023-10-27T13:06:24Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z) - Recommender Systems: A Primer [7.487718119544156]
本稿では,従来のレコメンデーション問題の定式化について概説する。
次に、アイテム検索とランキングのための古典的アルゴリズムパラダイムをレビューする。
本稿では,近年のレコメンデーションシステム研究の進展について論じる。
論文 参考訳(メタデータ) (2023-02-06T06:19:05Z) - A Review on Pushing the Limits of Baseline Recommendation Systems with
the integration of Opinion Mining & Information Retrieval Techniques [0.0]
Recommendation Systemsでは、利用者の期待にタイムリーかつ関連性がありながら、コミュニティ内のトレンドアイテムを識別することができる。
より優れた品質のレコメンデーションを達成するために、ディープラーニングの手法が提案されている。
研究者たちは、最も効果的なレコメンデーションを提供するために、標準レコメンデーションシステムの能力を拡大しようと試みている。
論文 参考訳(メタデータ) (2022-05-03T22:13:33Z) - Deep Multi-View Learning for Tire Recommendation [0.0]
本稿では,産業データに適用されたいくつかの最先端マルチビューモデルの比較研究を提案する。
本研究は,レコメンデーションシステムにおける多視点学習の有効性を実証するものである。
論文 参考訳(メタデータ) (2022-03-23T14:43:14Z) - An Overview of Recommender Systems and Machine Learning in Feature
Modeling and Configuration [55.67505546330206]
レコメンダーシステムおよび機械学習技術の適用に関連する潜在的な新しい研究ラインの概要を説明します。
本論文では,レコメンダーシステムと機械学習の応用例を示し,今後の研究課題について考察する。
論文 参考訳(メタデータ) (2021-02-12T17:21:36Z) - Simultaneous Relevance and Diversity: A New Recommendation Inference
Approach [81.44167398308979]
本稿では,新しいCF推論手法である負対陽性を導入することにより,一般協調フィルタリング(CF)を拡張した新しい手法を提案する。
我々のアプローチは、様々な高度なレベルでの幅広い推奨シナリオ/ユースケースに適用できる。
公開データセットと実世界の生産データに関する分析と実験により、我々のアプローチは、関連性および多様性に関する既存の手法を同時に上回ることを示した。
論文 参考訳(メタデータ) (2020-09-27T22:20:12Z) - A Deep Hybrid Model for Recommendation Systems [0.0]
我々は,ID埋め込みだけでなく,求人情報の特徴や求人システム候補などの補助情報も含む新しいディープニューラルネットワークアーキテクチャを提案する。
ジョブサイトからのデータセットに対する実験結果から,提案手法は,ID埋め込みを用いたディープラーニングモデルよりも推奨結果を改善することが示された。
論文 参考訳(メタデータ) (2020-09-21T10:41:28Z) - Self-Supervised Reinforcement Learning for Recommender Systems [77.38665506495553]
逐次リコメンデーションタスクのための自己指導型強化学習を提案する。
提案手法は,2つの出力層を持つ標準レコメンデーションモデルを強化する。
このようなアプローチに基づいて、自己監督型Q-ラーニング(SQN)と自己監督型アクター・クライブ(SAC)という2つのフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-10T11:18:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。