論文の概要: A Survey on Recommendation Unlearning: Fundamentals, Taxonomy, Evaluation, and Open Questions
- arxiv url: http://arxiv.org/abs/2412.12836v1
- Date: Tue, 17 Dec 2024 11:58:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:59:57.559849
- Title: A Survey on Recommendation Unlearning: Fundamentals, Taxonomy, Evaluation, and Open Questions
- Title(参考訳): レコメンデーション・アンラーニングに関する調査:基礎,分類,評価,オープンな質問
- Authors: Yuyuan Li, Xiaohua Feng, Chaochao Chen, Qiang Yang,
- Abstract要約: 推薦システムは、ユーザの行動と意思決定を形作ることに、ますます影響力を増している。
レコメンデータシステムにおける機械学習モデルの普及は、ユーザのプライバシとセキュリティに関する重要な懸念を引き起こしている。
従来の機械学習手法は、協調的な相互作用やモデルパラメータによって引き起こされるユニークな課題のために、アンラーニングを推奨するのに不適である。
- 参考スコア(独自算出の注目度): 16.00188808166725
- License:
- Abstract: Recommender systems have become increasingly influential in shaping user behavior and decision-making, highlighting their growing impact in various domains. Meanwhile, the widespread adoption of machine learning models in recommender systems has raised significant concerns regarding user privacy and security. As compliance with privacy regulations becomes more critical, there is a pressing need to address the issue of recommendation unlearning, i.e., eliminating the memory of specific training data from the learned recommendation models. Despite its importance, traditional machine unlearning methods are ill-suited for recommendation unlearning due to the unique challenges posed by collaborative interactions and model parameters. This survey offers a comprehensive review of the latest advancements in recommendation unlearning, exploring the design principles, challenges, and methodologies associated with this emerging field. We provide a unified taxonomy that categorizes different recommendation unlearning approaches, followed by a summary of widely used benchmarks and metrics for evaluation. By reviewing the current state of research, this survey aims to guide the development of more efficient, scalable, and robust recommendation unlearning techniques. Furthermore, we identify open research questions in this field, which could pave the way for future innovations not only in recommendation unlearning but also in a broader range of unlearning tasks across different machine learning applications.
- Abstract(参考訳): レコメンダシステムは、ユーザの振る舞いや意思決定を形作る上で、ますます影響力を増し、さまざまな領域における彼らの影響力の高まりを浮き彫りにしている。
一方、リコメンデータシステムにおける機械学習モデルの普及は、ユーザのプライバシとセキュリティに関する重大な懸念を引き起こしている。
プライバシー規制の遵守がより重要になるにつれて、レコメンデーションアンラーニング、すなわち学習したレコメンデーションモデルから特定のトレーニングデータの記憶をなくすという問題に対処する必要がある。
その重要性にもかかわらず、伝統的な機械学習手法は、協調的な相互作用やモデルパラメータによって生じる固有の課題のために、非学習を推奨するのに不適である。
この調査は、この新興分野に関連する設計原則、課題、方法論を探求し、非学習における最新の進歩を包括的にレビューする。
我々は、異なるレコメンデーションアンラーニングアプローチを分類する統一された分類法を提供し、続いて広く使われているベンチマークと評価のためのメトリクスを要約する。
この調査は、現在の研究状況を見直すことで、より効率的でスケーラブルで堅牢なレコメンデーション・アンラーニング・テクニックの開発を導くことを目的としている。
さらに、この分野でのオープンな研究課題を特定し、アンラーニングを推奨するだけでなく、さまざまな機械学習アプリケーションにまたがる幅広いアンラーニングタスクにおいて、将来のイノベーションの道を開くことができる。
関連論文リスト
- Generative Large Recommendation Models: Emerging Trends in LLMs for Recommendation [85.52251362906418]
このチュートリアルでは、大規模言語モデル(LLM)を統合するための2つの主要なアプローチを探求する。
これは、最近の進歩、課題、潜在的研究の方向性を含む、生成的な大規模なレコメンデーションモデルの包括的な概要を提供する。
主なトピックは、データ品質、スケーリング法則、ユーザの行動マイニング、トレーニングと推論の効率性である。
論文 参考訳(メタデータ) (2025-02-19T14:48:25Z) - CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence [55.21518669075263]
CURE4Recは、レコメンデーションアンラーニング評価のための最初の包括的なベンチマークである。
さまざまな影響レベルのデータに対する推薦公正性と堅牢性に対するアンラーニングの影響について検討する。
論文 参考訳(メタデータ) (2024-08-26T16:21:50Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
フェデレーション・アンラーニングは、フェデレーション・システムで訓練されたモデルからデータを選択的に除去することを可能にする。
本稿では,既存のフェデレーション・アンラーニング手法について検討し,アルゴリズムの効率,モデル精度への影響,プライバシ保護の有効性について検討する。
フェデレートされたアンラーニング手法を評価するための統一ベンチマークであるOpenFederatedUnlearningフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - Embedding in Recommender Systems: A Survey [67.67966158305603]
重要な側面は、ユーザやアイテムIDといった高次元の離散的な特徴を低次元連続ベクトルに包含する技法である。
埋め込み技術の適用は複雑なエンティティ関係を捉え、かなりの研究を刺激している。
この調査では、協調フィルタリング、自己教師付き学習、グラフベースのテクニックなどの埋め込み手法を取り上げている。
論文 参考訳(メタデータ) (2023-10-28T06:31:06Z) - Fisher-Weighted Merge of Contrastive Learning Models in Sequential
Recommendation [0.0]
我々は、まず、フィッシャー・マージング法をシークエンシャル・レコメンデーションに適用し、それに関連する実践的な課題に対処し、解決する。
提案手法の有効性を実証し, シーケンシャルラーニングおよびレコメンデーションシステムにおける最先端化の可能性を明らかにする。
論文 参考訳(メタデータ) (2023-07-05T05:58:56Z) - Recent Advances in Heterogeneous Relation Learning for Recommendation [5.390295867837705]
異種関係学習に焦点を当てたレコメンデーションフレームワークの開発について概説する。
このタスクの目的は、不均一な関係データを潜在表現空間にマッピングすることである。
本稿では,行列分解,注意機構,グラフニューラルネットワークなど,各カテゴリの学習手法について論じる。
論文 参考訳(メタデータ) (2021-10-07T13:32:04Z) - KnowledgeCheckR: Intelligent Techniques for Counteracting Forgetting [52.623349754076024]
KnowledgeCheckRに統合された推奨アプローチの概要を提供します。
その例としては,将来的に繰り返される学習内容の識別を支援するユーティリティベースのレコメンデーション,セッションベースのレコメンデーションを実装するための協調フィルタリングアプローチ,インテリジェントな質問応答を支援するコンテントベースのレコメンデーションなどがある。
論文 参考訳(メタデータ) (2021-02-15T20:06:28Z) - Reinforcement Learning for Strategic Recommendations [32.73903761398027]
ストラテジックレコメンデーション(SR)とは、知的エージェントがユーザのシーケンシャルな行動や活動を観察し、いつ、どのように相互作用するかを決めて、ユーザとビジネスの両方の長期的な目的を最適化する問題を指す。
Adobeリサーチでは、関心点の推薦、チュートリアルレコメンデーション、マルチメディア編集ソフトウェアにおける次のステップガイダンス、ライフタイムバリューの最適化のための広告レコメンデーションなど、さまざまなユースケースでこのようなシステムを実装してきました。
ユーザのシーケンシャルな振る舞いをモデル化したり、いつ介入するかを決め、ユーザに迷惑をかけずにレコメンデーションを提示したり、オフラインでポリシーを評価するなど、これらのシステム構築には多くの研究課題がある。
論文 参考訳(メタデータ) (2020-09-15T20:45:48Z) - Developing a Recommendation Benchmark for MLPerf Training and Inference [16.471395965484145]
我々は、Theerferf Training and Inference Suitesの業界関連レコメンデーションベンチマークを定義することを目指している。
本稿では、パーソナライズされたレコメンデーションシステムのための望ましいモデリング戦略を合成する。
我々はレコメンデーションモデルアーキテクチャとデータセットの望ましい特徴を概説する。
論文 参考訳(メタデータ) (2020-03-16T17:13:00Z) - A Survey on Knowledge Graph-Based Recommender Systems [65.50486149662564]
我々は知識グラフに基づく推薦システムの体系的な調査を行う。
論文は、知識グラフを正確かつ説明可能なレコメンデーションにどのように活用するかに焦点を当てる。
これらの作業で使用されるデータセットを紹介します。
論文 参考訳(メタデータ) (2020-02-28T02:26:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。