Accelerating Point Cloud Ground Segmentation: From Mechanical to Solid-State Lidars
- URL: http://arxiv.org/abs/2408.10404v2
- Date: Tue, 17 Sep 2024 18:23:16 GMT
- Title: Accelerating Point Cloud Ground Segmentation: From Mechanical to Solid-State Lidars
- Authors: Xiao Zhang, Zhanhong Huang, Garcia Gonzalez Antony, Xinming Huang,
- Abstract summary: We first benchmark point-based, grid-based, and range image-based ground segmentation algorithms.
Our results indicate that the range image-based method offers superior performance and robustness.
Implementing the proposed algorithm on an FPGA demonstrates significant improvements in processing speed and scalability of resource usage.
- Score: 6.0753266069240235
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this study, we propose a novel parallel processing method for point cloud ground segmentation, aimed at the technology evolution from mechanical to solid-state Lidar (SSL). We first benchmark point-based, grid-based, and range image-based ground segmentation algorithms using the SemanticKITTI dataset. Our results indicate that the range image-based method offers superior performance and robustness, particularly in resilience to frame slicing. Implementing the proposed algorithm on an FPGA demonstrates significant improvements in processing speed and scalability of resource usage. Additionally, we develop a custom dataset using camera-SSL equipment on our test vehicle to validate the effectiveness of the parallel processing approach for SSL frames in real world, achieving processing rates up to 30.9 times faster than CPU implementations. These findings underscore the potential of parallel processing strategies to enhance Lidar technologies for advanced perception tasks in autonomous vehicles and robotics. The data and code will be available post-publication on our GitHub repository: \url{https://github.com/WPI-APA-Lab/GroundSeg-Solid-State-Lidar-Parallel-Processing}
Related papers
- Large-scale Remote Sensing Image Target Recognition and Automatic Annotation [0.0]
This paper presents a method for object recognition and automatic labeling in large-area remote sensing images called LRSAA.
The method integrates YOLOv11 and MobileNetV3-SSD object detection algorithms through ensemble learning to enhance model performance.
arXiv Detail & Related papers (2024-11-12T13:57:13Z) - DH-PTAM: A Deep Hybrid Stereo Events-Frames Parallel Tracking And Mapping System [1.443696537295348]
This paper presents a robust approach for a visual parallel tracking and mapping (PTAM) system that excels in challenging environments.
Our proposed method combines the strengths of heterogeneous multi-modal visual sensors, in a unified reference frame.
Our implementation's research-based Python API is publicly available on GitHub.
arXiv Detail & Related papers (2023-06-02T19:52:13Z) - ParaGraph: Weighted Graph Representation for Performance Optimization of
HPC Kernels [1.304892050913381]
We introduce a new graph-based program representation for parallel applications that extends the Abstract Syntax Tree.
We evaluate our proposed representation by training a Graph Neural Network (GNN) to predict the runtime of an OpenMP code region.
Results show that our approach is indeed effective and has normalized RMSE as low as 0.004 to at most 0.01 in its runtime predictions.
arXiv Detail & Related papers (2023-04-07T05:52:59Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - Ultra-High-Definition Low-Light Image Enhancement: A Benchmark and
Transformer-Based Method [51.30748775681917]
We consider the task of low-light image enhancement (LLIE) and introduce a large-scale database consisting of images at 4K and 8K resolution.
We conduct systematic benchmarking studies and provide a comparison of current LLIE algorithms.
As a second contribution, we introduce LLFormer, a transformer-based low-light enhancement method.
arXiv Detail & Related papers (2022-12-22T09:05:07Z) - Exploring Techniques for the Analysis of Spontaneous Asynchronicity in
MPI-Parallel Applications [0.8889304968879161]
We run microbenchmarks and realistic proxy applications with the regular compute-communicate structure on two different supercomputing platforms.
We show how desynchronization patterns can be readily identified from a data set that is much smaller than a full MPI trace.
arXiv Detail & Related papers (2022-05-27T13:19:07Z) - Hardware-Efficient Deconvolution-Based GAN for Edge Computing [1.5229257192293197]
Generative Adversarial Networks (GAN) are cutting-edge algorithms for generating new data samples based on the learned data distribution.
We proposed an HW/SW co-design approach for training quantized deconvolution GAN (QDCGAN) implemented on FPGA using a scalable streaming dataflow architecture.
Various precisions, datasets, and network scalability were analyzed for low-power inference on resource-constrained platforms.
arXiv Detail & Related papers (2022-01-18T11:16:59Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Providing Meaningful Data Summarizations Using Examplar-based Clustering
in Industry 4.0 [67.80123919697971]
We show, that our GPU implementation provides speedups of up to 72x using single-precision and up to 452x using half-precision compared to conventional CPU algorithms.
We apply our algorithm to real-world data from injection molding manufacturing processes and discuss how found summaries help with steering this specific process to cut costs and reduce the manufacturing of bad parts.
arXiv Detail & Related papers (2021-05-25T15:55:14Z) - Multi-scale Interaction for Real-time LiDAR Data Segmentation on an
Embedded Platform [62.91011959772665]
Real-time semantic segmentation of LiDAR data is crucial for autonomously driving vehicles.
Current approaches that operate directly on the point cloud use complex spatial aggregation operations.
We propose a projection-based method, called Multi-scale Interaction Network (MINet), which is very efficient and accurate.
arXiv Detail & Related papers (2020-08-20T19:06:11Z) - Real-Time High-Performance Semantic Image Segmentation of Urban Street
Scenes [98.65457534223539]
We propose a real-time high-performance DCNN-based method for robust semantic segmentation of urban street scenes.
The proposed method achieves the accuracy of 73.6% and 68.0% mean Intersection over Union (mIoU) with the inference speed of 51.0 fps and 39.3 fps.
arXiv Detail & Related papers (2020-03-11T08:45:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.