Towards On-Device Learning and Reconfigurable Hardware Implementation for Encoded Single-Photon Signal Processing
- URL: http://arxiv.org/abs/2504.09028v1
- Date: Sat, 12 Apr 2025 00:58:52 GMT
- Title: Towards On-Device Learning and Reconfigurable Hardware Implementation for Encoded Single-Photon Signal Processing
- Authors: Zhenya Zang, Xingda Li, David Day Uei Li,
- Abstract summary: We propose an online training algorithm based on a One-Sided Jacobi rotation-based Online Sequential Extreme Learning Machine (OSOS-ELM)<n>We fully exploit parallelism in executing OSOS-ELM on a heterogeneous FPGA with integrated ARM cores.<n>We validate our approach through three case studies involving single-photon signal analysis.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) enhance the accuracy and efficiency of reconstructing key parameters from time-resolved photon arrival signals recorded by single-photon detectors. However, the performance of conventional backpropagation-based DNNs is highly dependent on various parameters of the optical setup and biological samples under examination, necessitating frequent network retraining, either through transfer learning or from scratch. Newly collected data must also be stored and transferred to a high-performance GPU server for retraining, introducing latency and storage overhead. To address these challenges, we propose an online training algorithm based on a One-Sided Jacobi rotation-based Online Sequential Extreme Learning Machine (OSOS-ELM). We fully exploit parallelism in executing OSOS-ELM on a heterogeneous FPGA with integrated ARM cores. Extensive evaluations of OSOS-ELM and OSELM demonstrate that both achieve comparable accuracy across different network dimensions (i.e., input, hidden, and output layers), while OSOS-ELM proves to be more hardware-efficient. By leveraging the parallelism of OSOS-ELM, we implement a holistic computing prototype on a Xilinx ZCU104 FPGA, which integrates a multi-core CPU and programmable logic fabric. We validate our approach through three case studies involving single-photon signal analysis: sensing through fog using commercial single-photon LiDAR, fluorescence lifetime estimation in FLIM, and blood flow index reconstruction in DCS, all utilizing one-dimensional data encoded from photonic signals. From a hardware perspective, we optimize the OSOS-ELM workload by employing multi-tasked processing on ARM CPU cores and pipelined execution on the FPGA's logic fabric. We also implement our OSOS-ELM on the NVIDIA Jetson Xavier NX GPU to comprehensively investigate its computing performance on another type of heterogeneous computing platform.
Related papers
- Real-Time Semantic Segmentation of Aerial Images Using an Embedded U-Net: A Comparison of CPU, GPU, and FPGA Workflows [0.0]
This study introduces a lightweight U-Net model optimized for real-time semantic segmentation of aerial images.<n>We maintain the accuracy of the U-Net on a real-world dataset while significantly reducing the model's parameters and Multiply-Accumulate (MAC) operations by a factor of 16.
arXiv Detail & Related papers (2025-03-07T08:33:28Z) - Efficient and accurate neural field reconstruction using resistive memory [52.68088466453264]
Traditional signal reconstruction methods on digital computers face both software and hardware challenges.
We propose a systematic approach with software-hardware co-optimizations for signal reconstruction from sparse inputs.
This work advances the AI-driven signal restoration technology and paves the way for future efficient and robust medical AI and 3D vision applications.
arXiv Detail & Related papers (2024-04-15T09:33:09Z) - Exploiting FPGA Capabilities for Accelerated Biomedical Computing [0.0]
This study presents advanced neural network architectures for enhanced ECG signal analysis using Field Programmable Gate Arrays (FPGAs)
We utilize the MIT-BIH Arrhythmia Database for training and validation, introducing Gaussian noise to improve robustness.
The study ultimately offers a guide for optimizing neural network performance on FPGAs for various applications.
arXiv Detail & Related papers (2023-07-16T01:20:17Z) - Implementing Neural Network-Based Equalizers in a Coherent Optical
Transmission System Using Field-Programmable Gate Arrays [3.1543509940301946]
We show the offline FPGA realization of both recurrent and feedforward neural network (NN)-based equalizers for nonlinearity compensation in coherent optical transmission systems.
The main results are divided into three parts: a performance comparison, an analysis of how activation functions are implemented, and a report on the complexity of the hardware.
arXiv Detail & Related papers (2022-12-09T07:28:45Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Learning with Multigraph Convolutional Filters [153.20329791008095]
We introduce multigraph convolutional neural networks (MGNNs) as stacked and layered structures where information is processed according to an MSP model.
We also develop a procedure for tractable computation of filter coefficients in the MGNNs and a low cost method to reduce the dimensionality of the information transferred between layers.
arXiv Detail & Related papers (2022-10-28T17:00:50Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - A Graph Deep Learning Framework for High-Level Synthesis Design Space
Exploration [11.154086943903696]
High-Level Synthesis is a solution for fast prototyping application-specific hardware.
We propose HLS, for the first time in the literature, graph neural networks that jointly predict acceleration performance and hardware costs.
We show that our approach achieves prediction accuracy comparable with that of commonly used simulators.
arXiv Detail & Related papers (2021-11-29T18:17:45Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z) - GraphACT: Accelerating GCN Training on CPU-FPGA Heterogeneous Platforms [1.2183405753834562]
Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art deep learning model for representation learning on graphs.
It is challenging to accelerate training of GCNs due to substantial and irregular data communication.
We design a novel accelerator for training GCNs on CPU-FPGA heterogeneous systems.
arXiv Detail & Related papers (2019-12-31T21:19:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.