論文の概要: Feasibility of assessing cognitive impairment via distributed camera network and privacy-preserving edge computing
- arxiv url: http://arxiv.org/abs/2408.10442v1
- Date: Mon, 19 Aug 2024 22:34:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 17:33:21.616752
- Title: Feasibility of assessing cognitive impairment via distributed camera network and privacy-preserving edge computing
- Title(参考訳): 分散カメラネットワークとプライバシー保護エッジコンピューティングによる認知障害評価の可能性
- Authors: Chaitra Hegde, Yashar Kiarashi, Allan I Levey, Amy D Rodriguez, Hyeokhyen Kwon, Gari D Clifford,
- Abstract要約: 軽度認知障害(MCI)は、典型的な年齢以上の認知機能の低下と教育関連の期待が特徴である。
私たちは、一連の機械学習アルゴリズムのトレーニングに使用された動きと社会的相互作用機能を開発しました。
特定のレベルのMCIと関連付けるための個々の識別子が欠如しているにもかかわらず、最も重要な機能を使用した機械学習アプローチは71%の精度を提供した。
- 参考スコア(独自算出の注目度): 2.2231315943430143
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: INTRODUCTION: Mild cognitive impairment (MCI) is characterized by a decline in cognitive functions beyond typical age and education-related expectations. Since, MCI has been linked to reduced social interactions and increased aimless movements, we aimed to automate the capture of these behaviors to enhance longitudinal monitoring. METHODS: Using a privacy-preserving distributed camera network, we collected movement and social interaction data from groups of individuals with MCI undergoing therapy within a 1700$m^2$ space. We developed movement and social interaction features, which were then used to train a series of machine learning algorithms to distinguish between higher and lower cognitive functioning MCI groups. RESULTS: A Wilcoxon rank-sum test revealed statistically significant differences between high and low-functioning cohorts in features such as linear path length, walking speed, change in direction while walking, entropy of velocity and direction change, and number of group formations in the indoor space. Despite lacking individual identifiers to associate with specific levels of MCI, a machine learning approach using the most significant features provided a 71% accuracy. DISCUSSION: We provide evidence to show that a privacy-preserving low-cost camera network using edge computing framework has the potential to distinguish between different levels of cognitive impairment from the movements and social interactions captured during group activities.
- Abstract(参考訳): 軽度認知障害 (MCI) は、典型的な年齢以上の認知機能の低下と教育関連の期待が特徴である。
以来、MCIは社会的相互作用の減少と目的のない動きの増大に結びついており、これらの行動の把握を自動化し、縦断的モニタリングを強化することを目的としている。
方法: プライバシ保存型分散カメラネットワークを用いて, 1700$m^2$空間でMCI治療中の個人集団の移動と社会的相互作用データを収集した。
そこで我々は,MCI群を高次・低次認知機能に区別するために,一連の機械学習アルゴリズムを訓練するために,移動機能と社会的相互作用機能を開発した。
結果: ウィルコクソンランクサム試験では, 直線路長, 歩行速度, 歩行中の方向変化, 速度と方向のエントロピー, 室内空間における群形成数などの特徴において, 高機能コホートと低機能コホートの間に統計的に有意な差が認められた。
特定のレベルのMCIと関連付けるための個々の識別子が欠如しているにもかかわらず、最も重要な機能を使用した機械学習アプローチは、精度を71%向上させた。
DisCusSION: エッジコンピューティングフレームワークを用いたプライバシー保護型低コストカメラネットワークは,グループ活動中に捉えた認知障害と社会的相互作用のレベルの違いを識別する可能性があることを示す証拠を提供する。
関連論文リスト
- Visual-Geometric Collaborative Guidance for Affordance Learning [63.038406948791454]
本稿では,視覚的・幾何学的手がかりを取り入れた視覚・幾何学的協調学習ネットワークを提案する。
本手法は,客観的指標と視覚的品質の代表的なモデルより優れている。
論文 参考訳(メタデータ) (2024-10-15T07:35:51Z) - DeepFace-Attention: Multimodal Face Biometrics for Attention Estimation with Application to e-Learning [18.36413246876648]
本研究では,Webカメラビデオに適用した顔分析手法のアンサンブルを用いて,注意レベル(認知的負荷)を推定する革新的な手法を提案する。
我々のアプローチは、最先端の顔分析技術を適用し、ユーザの認知的負荷を、高い注意や低い注意の形で定量化する。
提案手法は,mEBAL2ベンチマークを用いて,既存の最先端の精度を向上する。
論文 参考訳(メタデータ) (2024-08-10T11:39:11Z) - DSAM: A Deep Learning Framework for Analyzing Temporal and Spatial Dynamics in Brain Networks [4.041732967881764]
ほとんどのrs-fMRI研究は、関心のある脳領域にまたがる単一の静的機能接続行列を計算している。
これらのアプローチは、脳のダイナミクスを単純化し、目の前のゴールを適切に考慮していないリスクがある。
本稿では,時系列から直接ゴール固有の機能的接続行列を学習する,解釈可能な新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-19T23:35:06Z) - Bodily Behaviors in Social Interaction: Novel Annotations and
State-of-the-Art Evaluation [0.0]
本稿では,社会相互作用に埋め込まれた複雑な身体行動の最初のアノテーションであるBBSIについて述べる。
心理学における過去の研究に基づいて,26時間の自発的な行動について手動で注釈を付けた。
我々は、人間の行動検出のための最先端のアプローチであるピラミッド拡張注意ネットワーク(PDAN)を適応する。
論文 参考訳(メタデータ) (2022-07-26T11:24:00Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
本研究の目的は,非言語的キューと計算手法を同定し,効果的な性能を実現することである。
この調査は、最も広い範囲の社会現象と相互作用設定を巻き込むことによって、相手と異なる。
もっともよく使われる非言語キュー、計算方法、相互作用環境、センシングアプローチは、それぞれマイクとカメラを備えた3,4人で構成される会話活動、ベクターマシンのサポート、ミーティングである。
論文 参考訳(メタデータ) (2022-07-20T13:37:57Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - Learning shared neural manifolds from multi-subject FMRI data [13.093635609349874]
MRMD-AEmaniと呼ばれる,複数の被験者から共通の埋め込みを実験で学習するニューラルネットワークを提案する。
学習した共通空間は、テンポラル多様体(トレーニング中に見えない新しい点をマッピングできる)を表し、目に見えない時間点の刺激特徴の分類を改善する。
このフレームワークは、将来的には脳-コンピュータインタフェース(BCI)トレーニングなど、多くのダウンストリームアプリケーションに応用できると考えています。
論文 参考訳(メタデータ) (2021-12-22T23:08:39Z) - Domain Adaptive Robotic Gesture Recognition with Unsupervised
Kinematic-Visual Data Alignment [60.31418655784291]
本稿では,マルチモダリティ知識,すなわちキネマティックデータとビジュアルデータを同時にシミュレータから実ロボットに伝達できる,教師なしドメイン適応フレームワークを提案する。
ビデオの時間的手がかりと、ジェスチャー認識に対するマルチモーダル固有の相関を用いて、トランスファー可能な機能を強化したドメインギャップを修復する。
その結果, 本手法は, ACCでは最大12.91%, F1scoreでは20.16%と, 実際のロボットではアノテーションを使わずに性能を回復する。
論文 参考訳(メタデータ) (2021-03-06T09:10:03Z) - Identity-Aware Attribute Recognition via Real-Time Distributed Inference
in Mobile Edge Clouds [53.07042574352251]
我々は、MEC対応カメラ監視システムにおいて、re-IDを用いた歩行者属性認識のための新しいモデルの設計を行う。
本稿では,属性認識と人物再IDを協調的に考慮し,分散モジュールの集合を持つ新しい推論フレームワークを提案する。
そこで我々は,提案した分散推論フレームワークのモジュール分布の学習に基づくアルゴリズムを考案した。
論文 参考訳(メタデータ) (2020-08-12T12:03:27Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
マシンはユーザの感情状態を高い精度で認識できることが不可欠である。
ディープニューラルネットワークは感情を認識する上で大きな成功を収めている。
表情認識に基づく連続的感情認識のための新しいモデルを提案する。
論文 参考訳(メタデータ) (2020-01-31T17:47:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。