論文の概要: Shape-for-Motion: Precise and Consistent Video Editing with 3D Proxy
- arxiv url: http://arxiv.org/abs/2506.22432v1
- Date: Fri, 27 Jun 2025 17:59:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-30 21:12:23.320221
- Title: Shape-for-Motion: Precise and Consistent Video Editing with 3D Proxy
- Title(参考訳): Shape-for-Motion:3Dプロキシによる精密かつ一貫性のあるビデオ編集
- Authors: Yuhao Liu, Tengfei Wang, Fang Liu, Zhenwei Wang, Rynson W. H. Lau,
- Abstract要約: 本稿では,精密で一貫したビデオ編集のための3Dプロキシを組み込んだ新しいフレームワークであるShape-for-Motionを紹介する。
我々のフレームワークは、ポーズ編集、回転、スケーリング、翻訳、テクスチャ修正、オブジェクト合成など、ビデオフレーム間の精密で物理的に一貫性のある操作をサポートしています。
- 参考スコア(独自算出の注目度): 36.08715662927022
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep generative modeling have unlocked unprecedented opportunities for video synthesis. In real-world applications, however, users often seek tools to faithfully realize their creative editing intentions with precise and consistent control. Despite the progress achieved by existing methods, ensuring fine-grained alignment with user intentions remains an open and challenging problem. In this work, we present Shape-for-Motion, a novel framework that incorporates a 3D proxy for precise and consistent video editing. Shape-for-Motion achieves this by converting the target object in the input video to a time-consistent mesh, i.e., a 3D proxy, allowing edits to be performed directly on the proxy and then inferred back to the video frames. To simplify the editing process, we design a novel Dual-Propagation Strategy that allows users to perform edits on the 3D mesh of a single frame, and the edits are then automatically propagated to the 3D meshes of the other frames. The 3D meshes for different frames are further projected onto the 2D space to produce the edited geometry and texture renderings, which serve as inputs to a decoupled video diffusion model for generating edited results. Our framework supports various precise and physically-consistent manipulations across the video frames, including pose editing, rotation, scaling, translation, texture modification, and object composition. Our approach marks a key step toward high-quality, controllable video editing workflows. Extensive experiments demonstrate the superiority and effectiveness of our approach. Project page: https://shapeformotion.github.io/
- Abstract(参考訳): 深層生成モデリングの最近の進歩は、ビデオ合成における前例のない機会を解き放っている。
しかし、現実世界のアプリケーションでは、ユーザーは正確で一貫したコントロールで創造的な編集意図を忠実に実現するためのツールを求めることが多い。
既存の手法によって達成された進歩にもかかわらず、ユーザの意図ときめ細かいアライメントを確保することは、オープンで困難な問題である。
本研究では,精密かつ一貫したビデオ編集のための3Dプロキシを組み込んだ新しいフレームワークであるShape-for-Motionを紹介する。
Shape-for-Motionは、入力ビデオ中の対象オブジェクトを時間一貫性のあるメッシュ、すなわち3Dプロキシに変換し、プロキシ上で直接編集を行い、ビデオフレームに推論することで、これを実現する。
編集作業を簡略化するために,ユーザが単一のフレームの3Dメッシュ上で編集を行うことのできる新しいデュアルプロパゲーション戦略を設計し,その編集を他のフレームの3Dメッシュに自動的に伝搬する。
異なるフレーム用の3Dメッシュはさらに2D空間に投影され、編集された幾何学とテクスチャレンダリングを生成し、編集された結果を生成するための分離されたビデオ拡散モデルへの入力として機能する。
我々のフレームワークは、ポーズ編集、回転、スケーリング、翻訳、テクスチャ修正、オブジェクト合成など、ビデオフレーム間の精密で物理的に一貫性のある操作をサポートしています。
弊社のアプローチは、高品質でコントロール可能なビデオ編集ワークフローへの重要な一歩だ。
大規模な実験は、我々のアプローチの優位性と有効性を示している。
プロジェクトページ: https://shapeformotion.github.io/
関連論文リスト
- Portrait Video Editing Empowered by Multimodal Generative Priors [39.747581584889495]
マルチモーダルプロンプトを用いた一貫した表現型スタイリングを実現する強力なポートレートビデオ編集手法であるPortraitGenを紹介する。
提案手法は,大規模2次元生成モデルから抽出した知識によるマルチモーダル入力を取り入れたものである。
また,表情類似性指導と顔認識画像編集モジュールを内蔵し,反復的データセット更新に伴う劣化問題を効果的に軽減する。
論文 参考訳(メタデータ) (2024-09-20T15:45:13Z) - Chat-Edit-3D: Interactive 3D Scene Editing via Text Prompts [76.73043724587679]
CE3Dと呼ばれる対話型3Dシーン編集手法を提案する。
Hash-Atlasは3Dシーンビューを表し、3Dシーンの編集を2Dアトラスイメージに転送する。
その結果、CE3Dは複数の視覚モデルを効果的に統合し、多様な視覚効果が得られることを示した。
論文 参考訳(メタデータ) (2024-07-09T13:24:42Z) - I2VEdit: First-Frame-Guided Video Editing via Image-to-Video Diffusion Models [18.36472998650704]
本稿では,1フレームからビデオ全体への編集を事前学習した画像対ビデオモデルを用いてプロパガンダすることで,画像編集ツールをビデオに適用可能にする,新しい汎用的ソリューションを提案する。
I2VEditと呼ばれる本手法は,編集範囲に応じて映像の視覚的・運動的整合性を適応的に保持する。
論文 参考訳(メタデータ) (2024-05-26T11:47:40Z) - DragGaussian: Enabling Drag-style Manipulation on 3D Gaussian Representation [57.406031264184584]
DragGaussianは、3D Gaussian Splattingをベースにした3Dオブジェクトのドラッグ編集フレームワークである。
我々の貢献は、新しいタスクの導入、インタラクティブなポイントベース3D編集のためのDragGaussianの開発、質的かつ定量的な実験によるその効果の包括的検証などである。
論文 参考訳(メタデータ) (2024-05-09T14:34:05Z) - Plasticine3D: 3D Non-Rigid Editing with Text Guidance by Multi-View Embedding Optimization [21.8454418337306]
本研究では,3次元非剛性編集が可能なテキスト誘導型3D編集パイプラインであるPlastine3Dを提案する。
本研究は,編集過程を幾何学的編集段階とテクスチャ的編集段階に分割し,構造と外観を別々に制御する。
細粒度制御のために,埋め込み空間の編集目的と原特徴を融合させるエンベディング・フュージョン (EF) を提案する。
論文 参考訳(メタデータ) (2023-12-15T09:01:54Z) - SHAP-EDITOR: Instruction-guided Latent 3D Editing in Seconds [73.91114735118298]
Shap-Editorは、新しいフィードフォワード3D編集フレームワークである。
フィードフォワード・エディター・ネットワークを構築することで,この空間で直接3D編集を行うことが可能であることを示す。
論文 参考訳(メタデータ) (2023-12-14T18:59:06Z) - Neural Video Fields Editing [56.558490998753456]
NVEditは、メモリオーバーヘッドを軽減し、一貫性を向上させるために設計された、テキスト駆動のビデオ編集フレームワークである。
我々は、数百フレームの長いビデオのエンコーディングを可能にするために、三面体とスパースグリッドを用いたニューラルビデオフィールドを構築した。
次に、オフザシェルフテキスト・トゥ・イメージ(T2I)モデルを用いて、ビデオフィールドをテキスト駆動編集エフェクトに更新する。
論文 参考訳(メタデータ) (2023-12-12T14:48:48Z) - MagicStick: Controllable Video Editing via Control Handle Transformations [49.29608051543133]
MagicStickは、抽出した内部制御信号の変換を利用してビデオプロパティを編集する、制御可能なビデオ編集方法である。
統合フレームワークにおける多数の実例について実験を行った。
また、形状対応テキストベースの編集や手作り動画生成と比較し、従来の作品よりも優れた時間的一貫性と編集能力を示した。
論文 参考訳(メタデータ) (2023-12-05T17:58:06Z) - SINE: Semantic-driven Image-based NeRF Editing with Prior-guided Editing
Field [37.8162035179377]
我々は,1つの画像でニューラルラディアンスフィールドを編集できる,新しい意味駆動型NeRF編集手法を提案する。
この目的を達成するために,3次元空間における微細な幾何学的・テクスチャ的編集を符号化する事前誘導編集場を提案する。
本手法は,1枚の編集画像のみを用いた写真リアルな3D編集を実現し,実世界の3Dシーンにおけるセマンティックな編集の限界を押し上げる。
論文 参考訳(メタデータ) (2023-03-23T13:58:11Z) - Edit-A-Video: Single Video Editing with Object-Aware Consistency [49.43316939996227]
本稿では,事前訓練されたTTIモデルと単一のテキスト,ビデオ>ペアのみを付与したビデオ編集フレームワークを提案する。
本フレームワークは,(1)時間モジュールチューニングを付加して2Dモデルを3Dモデルに膨らませること,(2)原動画をノイズに反転させ,対象のテキストプロンプトとアテンションマップインジェクションで編集すること,の2段階からなる。
各種のテキスト・ビデオに対して広範な実験結果を示し,背景整合性,テキストアライメント,ビデオ編集品質の点で,ベースラインに比べて提案手法の優位性を示す。
論文 参考訳(メタデータ) (2023-03-14T14:35:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。