IDEA: Enhancing the Rule Learning Ability of Large Language Model Agent through Induction, Deduction, and Abduction
- URL: http://arxiv.org/abs/2408.10455v4
- Date: Thu, 3 Oct 2024 01:47:53 GMT
- Title: IDEA: Enhancing the Rule Learning Ability of Large Language Model Agent through Induction, Deduction, and Abduction
- Authors: Kaiyu He, Mian Zhang, Shuo Yan, Peilin Wu, Zhiyu Zoey Chen,
- Abstract summary: We introduce RULEARN, a novel benchmark designed to assess the rule-learning abilities of large language models in interactive settings.
We propose IDEA, a novel reasoning framework that integrates the process of Induction, Deduction, and Abduction.
Our evaluation of the IDEA framework, which involves five representative LLMs, demonstrates significant improvements over the baseline.
- Score: 3.961279440272764
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While large language models (LLMs) have been thoroughly evaluated for deductive and inductive reasoning, their proficiency in abductive reasoning and holistic rule learning in interactive environments remains less explored. We introduce RULEARN, a novel benchmark specifically designed to assess the rule-learning abilities of LLM agents in interactive settings. In RULEARN, agents strategically interact with simulated environments to gather observations, discern patterns, and solve complex problems. To enhance the rule-learning capabilities for LLM agents, we propose IDEA, a novel reasoning framework that integrates the process of Induction, Deduction, and Abduction. The IDEA agent generates initial hypotheses from limited observations through abduction, devises plans to validate these hypotheses or leverages them to solve problems via deduction, and refines previous hypotheses using patterns identified from new observations through induction, dynamically establishing and applying rules that mimic human rule-learning behaviors. Our evaluation of the IDEA framework, which involves five representative LLMs, demonstrates significant improvements over the baseline. Furthermore, within this framework, our comparison with 50 human participants reveals notable discrepancies in rule-learning behaviors. LLM agents tend to generate plausible initial hypotheses but struggle to refine them through interaction. Conversely, humans, despite sometimes overlooking initial details, excel at incorporating feedback and continuously improving their hypotheses. We believe our benchmark, RULEARN, will serve as a valuable and challenging resource, and that the IDEA framework will provide crucial insights for the development of LLM agents capable of human-like rule learning in real-world scenarios. We will release our code and data upon acceptance of the paper.
Related papers
- MIRAGE: Evaluating and Explaining Inductive Reasoning Process in Language Models [19.81485079689837]
We evaluate large language models' capabilities in inductive and deductive stages.
We find that the models tend to consistently conduct correct deduction without correct inductive rules.
In the inductive reasoning process, the model tends to focus on observed facts that are close to the current test example in feature space.
arXiv Detail & Related papers (2024-10-12T14:12:36Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - Metacognitive Myopia in Large Language Models [0.0]
Large Language Models (LLMs) exhibit potentially harmful biases that reinforce culturally inherent stereotypes, cloud moral judgments, or amplify positive evaluations of majority groups.
We propose metacognitive myopia as a cognitive-ecological framework that can account for a conglomerate of established and emerging LLM biases.
Our theoretical framework posits that a lack of the two components of metacognition, monitoring and control, causes five symptoms of metacognitive myopia in LLMs.
arXiv Detail & Related papers (2024-08-10T14:43:57Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Characterizing Truthfulness in Large Language Model Generations with
Local Intrinsic Dimension [63.330262740414646]
We study how to characterize and predict the truthfulness of texts generated from large language models (LLMs)
We suggest investigating internal activations and quantifying LLM's truthfulness using the local intrinsic dimension (LID) of model activations.
arXiv Detail & Related papers (2024-02-28T04:56:21Z) - Enhancing Ethical Explanations of Large Language Models through
Iterative Symbolic Refinement [5.108863224378874]
This paper investigates how hybrid neuro-symbolic techniques can enhance the logical validity and alignment of ethical explanations.
We present an abductive-deductive framework named Logic-Explainer, which integrates Large Language Models with an external backward-chaining solver.
An empirical analysis demonstrates that Logic-Explainer can improve explanations generated via in-context learning methods and Chain-of-Thought.
arXiv Detail & Related papers (2024-02-01T16:39:51Z) - Phenomenal Yet Puzzling: Testing Inductive Reasoning Capabilities of Language Models with Hypothesis Refinement [92.61557711360652]
Language models (LMs) often fall short on inductive reasoning, despite achieving impressive success on research benchmarks.
We conduct a systematic study of the inductive reasoning capabilities of LMs through iterative hypothesis refinement.
We reveal several discrepancies between the inductive reasoning processes of LMs and humans, shedding light on both the potentials and limitations of using LMs in inductive reasoning tasks.
arXiv Detail & Related papers (2023-10-12T17:51:10Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
This paper presents a novel approach, namely SALMON, to align base language models with minimal human supervision.
We develop an AI assistant named Dromedary-2 with only 6 exemplars for in-context learning and 31 human-defined principles.
arXiv Detail & Related papers (2023-10-09T17:56:53Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.