論文の概要: Is the Lecture Engaging for Learning? Lecture Voice Sentiment Analysis for Knowledge Graph-Supported Intelligent Lecturing Assistant (ILA) System
- arxiv url: http://arxiv.org/abs/2408.10492v1
- Date: Tue, 20 Aug 2024 02:22:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 15:24:37.153478
- Title: Is the Lecture Engaging for Learning? Lecture Voice Sentiment Analysis for Knowledge Graph-Supported Intelligent Lecturing Assistant (ILA) System
- Title(参考訳): 学習用講義は学習用か?知識グラフ対応知的学習支援システム(ILA)の講義音声知覚分析
- Authors: Yuan An, Samarth Kolanupaka, Jacob An, Matthew Ma, Unnat Chhatwal, Alex Kalinowski, Michelle Rogers, Brian Smith,
- Abstract要約: 本システムは,音声,コンテンツ,教育のリアルタイム分析を通じて,生徒の学習力を高めるためのインストラクターを支援するように設計されている。
講義音声感情分析のケーススタディとして,3000以上の1分間の講義音声クリップからなるトレーニングセットを開発した。
私たちの究極のゴールは、現代の人工知能技術を活用することで、インストラクターがより積極的に効果的に教えることを支援することです。
- 参考スコア(独自算出の注目度): 0.060227699034124595
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces an intelligent lecturing assistant (ILA) system that utilizes a knowledge graph to represent course content and optimal pedagogical strategies. The system is designed to support instructors in enhancing student learning through real-time analysis of voice, content, and teaching methods. As an initial investigation, we present a case study on lecture voice sentiment analysis, in which we developed a training set comprising over 3,000 one-minute lecture voice clips. Each clip was manually labeled as either engaging or non-engaging. Utilizing this dataset, we constructed and evaluated several classification models based on a variety of features extracted from the voice clips. The results demonstrate promising performance, achieving an F1-score of 90% for boring lectures on an independent set of over 800 test voice clips. This case study lays the groundwork for the development of a more sophisticated model that will integrate content analysis and pedagogical practices. Our ultimate goal is to aid instructors in teaching more engagingly and effectively by leveraging modern artificial intelligence techniques.
- Abstract(参考訳): 本稿では,授業内容と最適教育戦略を表す知識グラフを用いた知的学習支援システム (ILA) を提案する。
本システムは,音声,コンテンツ,教育のリアルタイム分析を通じて,生徒の学習力を高めるためのインストラクターを支援するように設計されている。
初回調査では講義音声感情分析のケーススタディとして,3000点以上の講義音声クリップからなるトレーニングセットを開発した。
各クリップは手動でエンゲージメントまたは非エンゲージメントとしてラベル付けされた。
このデータセットを用いて,音声クリップから抽出した様々な特徴に基づいて,いくつかの分類モデルを構築し,評価した。
結果は,800以上のテスト音声クリップの独立したセット上での退屈な講義に対して,F1スコア90%を達成し,有望なパフォーマンスを示した。
このケーススタディは、コンテンツ分析と教育実践を統合した、より洗練されたモデルの開発の基礎となるものである。
私たちの究極のゴールは、現代の人工知能技術を活用することで、インストラクターがより積極的に効果的に教えることを支援することです。
関連論文リスト
- Intelligent Interface: Enhancing Lecture Engagement with Didactic Activity Summaries [0.054204929130712134]
このプロトタイプは、機械学習に基づく技術を用いて、講義のビデオ録画の中で選択された実践的、行動的な教師の特徴を認識する。
このシステムは、新しい/追加の機械学習モデルと画像およびビデオ分析のためのソフトウェアモジュールの(将来の)統合のための柔軟性を提供する。
論文 参考訳(メタデータ) (2024-06-20T12:45:23Z) - Multimodal Classification of Teaching Activities from University Lecture
Recordings [0.9790236766474201]
本稿では,授業のいつでも実施されている活動の種類を特定するマルチモーダル分類アルゴリズムを提案する。
いくつかの学術活動は、音声信号とより容易に識別でき、テキストの書き起こしに頼って他者を特定する必要がある。
論文 参考訳(メタデータ) (2023-12-24T08:33:30Z) - A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot [67.00455874279383]
そこで本研究では,自然言語による記述を生成するために長編動画を音声化し,生成したストーリーの映像理解タスクを実行することを提案する。
提案手法は,ゼロショットであるにもかかわらず,ビデオ理解のための教師付きベースラインよりもはるかに優れた結果が得られる。
ストーリー理解ベンチマークの欠如を緩和するため,我々は,説得戦略の識別に関する計算社会科学における重要な課題に関する最初のデータセットを公開している。
論文 参考訳(メタデータ) (2023-05-16T19:13:11Z) - Unsupervised Audio-Visual Lecture Segmentation [31.29084124332193]
AVLecturesは,STEMを対象とする2,350以上の講義を対象とする86のコースからなるデータセットである。
第2のコントリビューションは,ビデオ講義セグメンテーションの導入である。
我々はこれらの表現を用いて時間的に一貫した1-アネレスト隣のアルゴリズムTW-FINCHを用いてセグメントを生成する。
論文 参考訳(メタデータ) (2022-10-29T16:26:34Z) - Multimodal Lecture Presentations Dataset: Understanding Multimodality in
Educational Slides [57.86931911522967]
学習内容のマルチモーダル理解における機械学習モデルの能力を検証する。
このデータセットには,180時間以上のビデオと9000時間以上のスライドが,各科目から10人の講師が参加している。
マルチモーダル・トランスフォーマーであるPolyViLTを導入する。
論文 参考訳(メタデータ) (2022-08-17T05:30:18Z) - Conformer-Based Self-Supervised Learning for Non-Speech Audio Tasks [20.316239155843963]
本稿では,音声表現学習手法を提案し,それを下流の音声非音声タスクに適用する。
AudioSetベンチマークでは、平均平均精度(mAP)スコアが0.415に達しています。
論文 参考訳(メタデータ) (2021-10-14T12:32:40Z) - LiRA: Learning Visual Speech Representations from Audio through
Self-supervision [53.18768477520411]
セルフスーパービジョン(LiRA)による音声からの視覚的表現の学習を提案する。
具体的には、ResNet+Conformerモデルをトレーニングし、未学習の視覚音声から音響的特徴を予測する。
提案手法は,WildデータセットのLip Readingにおいて,他の自己教師的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-06-16T23:20:06Z) - Watch and Learn: Mapping Language and Noisy Real-world Videos with
Self-supervision [54.73758942064708]
我々は、明示的なアノテーションを使わずに、文章と騒々しいビデオスニペットのマッピングを学習することで、視覚と自然言語を理解するように機械に教える。
トレーニングと評価のために、多数のオンラインビデオとサブタイトルを含む新しいデータセットApartmenTourをコントリビュートする。
論文 参考訳(メタデータ) (2020-11-19T03:43:56Z) - Object Relational Graph with Teacher-Recommended Learning for Video
Captioning [92.48299156867664]
本稿では,新しいモデルと効果的なトレーニング戦略の両方を含む完全なビデオキャプションシステムを提案する。
具体的には,オブジェクトリレーショナルグラフ(ORG)に基づくエンコーダを提案する。
一方,教師推薦学習(TRL)手法を設計し,成功した外部言語モデル(ELM)をフル活用し,豊富な言語知識をキャプションモデルに統合する。
論文 参考訳(メタデータ) (2020-02-26T15:34:52Z) - Visually Guided Self Supervised Learning of Speech Representations [62.23736312957182]
音声視覚音声の文脈における視覚的モダリティによって導かれる音声表現を学習するためのフレームワークを提案する。
音声クリップに対応する静止画像をアニメーション化し、音声セグメントの実際の映像にできるだけ近いよう、生成した映像を最適化する。
我々は,感情認識のための技術成果と,音声認識のための競争結果を達成する。
論文 参考訳(メタデータ) (2020-01-13T14:53:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。