論文の概要: How Well Do Large Language Models Serve as End-to-End Secure Code Producers?
- arxiv url: http://arxiv.org/abs/2408.10495v1
- Date: Tue, 20 Aug 2024 02:42:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 15:24:37.147652
- Title: How Well Do Large Language Models Serve as End-to-End Secure Code Producers?
- Title(参考訳): 大規模言語モデルは、エンド・ツー・エンドのコード・プロデューサとしてどの程度機能するか?
- Authors: Jianian Gong, Nachuan Duan, Ziheng Tao, Zhaohui Gong, Yuan Yuan, Minlie Huang,
- Abstract要約: GPT-3.5 と GPT-4 の 4 つの LLM で生成されたコードの脆弱性を識別し,修復する能力について検討した。
4900のコードを手動または自動でレビューすることで、大きな言語モデルにはシナリオ関連セキュリティリスクの認識が欠けていることが判明した。
修復の1ラウンドの制限に対処するため,LLMにより安全なソースコード構築を促す軽量ツールを開発した。
- 参考スコア(独自算出の注目度): 42.119319820752324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid advancement of large language models (LLMs) such as GPT-4 has revolutionized the landscape of software engineering, positioning these models at the core of modern development practices. As we anticipate these models to evolve into the primary and trustworthy tools used in software development, ensuring the security of the code they produce becomes paramount. How well can LLMs serve as end-to-end secure code producers? This paper presents a systematic investigation into LLMs' inherent potential to generate code with fewer vulnerabilities. Specifically, We studied GPT-3.5 and GPT-4's capability to identify and repair vulnerabilities in the code generated by four popular LLMs including themselves (GPT-3.5, GPT-4, Code Llama, and CodeGeeX2). By manually or automatically reviewing 4,900 pieces of code, our study reveals that: (1) large language models lack awareness of scenario-relevant security risks, which leads to the generation of over 75% vulnerable code on the SecurityEval benchmark; (2) LLMs such as GPT-3.5 and GPT-4 are unable to precisely identify vulnerabilities in the code they generated; (3) GPT-3.5 and GPT-4 can achieve 33.2%~59.6% success rates in repairing the insecure code produced by the 4 LLMs, but they both perform poorly when repairing self-produced code, indicating self-repair "blind spots". To address the limitation of a single round of repair, we developed a lightweight tool that prompts LLMs to construct safer source code through an iterative repair procedure based on the insights gained from our study. Experiments show that assisted by semantic analysis engines, our tool significantly improves the success rates of repair to 65.9%~85.5%.
- Abstract(参考訳): GPT-4のような大規模言語モデル(LLM)の急速な進歩は、ソフトウェア工学の展望に革命をもたらし、これらのモデルを現代の開発プラクティスの中核に位置づけている。
これらのモデルがソフトウェア開発で使われる主要な、信頼性の高いツールに進化することを期待しているので、それらが生成するコードのセキュリティが最重要であることを保証します。
LLMは、エンドツーエンドのセキュアなコードプロデューサとして、どの程度うまく機能するのか?
本稿では,LSMが持つ脆弱性が少ないコード生成の可能性について,系統的に検討する。
具体的には,GPT-3.5,GPT-4,Code Llama,CodeGeeX2)を含む4つのLLMで生成されたコードの脆弱性を特定し,修復する機能について検討した。
4900個のコードを手動または自動でレビューすることで,(1)大規模言語モデルではシナリオ関連セキュリティリスクの認識が欠如しており,それがSecurityEvalベンチマークにおける75%以上の脆弱性コードの生成につながること,(2) GPT-3.5やGPT-4のようなLLMでは,生成したコードの脆弱性を正確に識別できないこと,(3) GPT-3.5やGPT-4は,4つのLLMで生成されたセキュリティコードの修復において33.2%~59.6%の成功率を達成することができること,などを明らかにした。
単一ラウンドの修復の限界に対処するため,本研究から得られた知見に基づいて,反復的な修復手順により,LCMがより安全なソースコードを構築するための軽量ツールを開発した。
セマンティック分析エンジンの補助により, 修復の成功率を65.9%~85.5%に向上させる実験を行った。
関連論文リスト
- ProSec: Fortifying Code LLMs with Proactive Security Alignment [14.907702430331803]
コード固有の大規模言語モデル(LLM)のセキュリティは、まだ未調査のままである。
コードLLMをセキュアなコーディングプラクティスと整合させるために設計された,新たなセキュリティアライメントアプローチであるProSecを提案する。
実験の結果、ProSecでトレーニングされたモデルは以前の研究よりも29.2%から35.5%安全であることが示されている。
論文 参考訳(メタデータ) (2024-11-19T22:00:01Z) - Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
大規模言語モデル(LLM)は、自動コード生成に大きな可能性を示している。
最近の研究は、多くのLLM生成コードが深刻なセキュリティ脆弱性を含んでいることを強調している。
我々は,LLMがセキュアなコードを生成する能力を高めるための新しいアプローチであるHexaCoderを紹介する。
論文 参考訳(メタデータ) (2024-09-10T12:01:43Z) - An Exploratory Study on Fine-Tuning Large Language Models for Secure Code Generation [17.69409515806874]
脆弱性修正コミットのデータセット上での微調整済みのLLMがセキュアなコード生成を促進するかどうかを探索研究する。
オープンソースのリポジトリから、確認済みの脆弱性のコード修正を収集することで、セキュアなコード生成のための微調整データセットをクロールしました。
我々の調査によると、微調整のLLMは、C言語で6.4%、C++言語で5.4%、セキュアなコード生成を改善することができる。
論文 参考訳(メタデータ) (2024-08-17T02:51:27Z) - Can We Trust Large Language Models Generated Code? A Framework for In-Context Learning, Security Patterns, and Code Evaluations Across Diverse LLMs [2.7138982369416866]
大規模言語モデル(LLM)は、ソフトウェア工学における自動コード生成に革命をもたらした。
しかし、生成されたコードのセキュリティと品質に関する懸念が持ち上がっている。
本研究は,LLMの行動学習をセキュアにするための枠組みを導入することで,これらの課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-06-18T11:29:34Z) - CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion [117.178835165855]
本稿では,自然言語入力をコード入力に変換するフレームワークであるCodeAttackを紹介する。
我々の研究は、コード入力に対するこれらのモデルの新たな、普遍的な安全性の脆弱性を明らかにした。
CodeAttackと自然言語の分布ギャップが大きくなると、安全性の一般化が弱くなる。
論文 参考訳(メタデータ) (2024-03-12T17:55:38Z) - SALLM: Security Assessment of Generated Code [0.5137309756089941]
本稿では,セキュアなコードを体系的に生成する大規模言語モデルの能力をベンチマークするフレームワークであるSALLMについて述べる。
フレームワークには3つの主要なコンポーネントがある。セキュリティ中心のPythonプロンプトの新たなデータセット、生成されたコードを評価するための評価テクニック、セキュアなコード生成の観点からモデルのパフォーマンスを評価するための新しいメトリクスである。
論文 参考訳(メタデータ) (2023-11-01T22:46:31Z) - Do-Not-Answer: A Dataset for Evaluating Safeguards in LLMs [59.596335292426105]
本稿では,大規模な言語モデルにおけるセーフガードを評価するための,最初のオープンソースデータセットを収集する。
我々は、自動安全性評価において、GPT-4に匹敵する結果を得るために、BERTライクな分類器をいくつか訓練する。
論文 参考訳(メタデータ) (2023-08-25T14:02:12Z) - How Effective Are Neural Networks for Fixing Security Vulnerabilities [25.050519427592253]
本稿では LLM と DL ベースの APR モデルの Java 脆弱性修復機能について検討し比較した。
結果として、より大きな脆弱性修復トレーニングデータを作成するなど、Javaの自動脆弱性修正を強化するイノベーションが求められている。
論文 参考訳(メタデータ) (2023-05-29T20:50:27Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。