論文の概要: FAGStyle: Feature Augmentation on Geodesic Surface for Zero-shot Text-guided Diffusion Image Style Transfer
- arxiv url: http://arxiv.org/abs/2408.10533v1
- Date: Tue, 20 Aug 2024 04:20:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 15:13:43.996733
- Title: FAGStyle: Feature Augmentation on Geodesic Surface for Zero-shot Text-guided Diffusion Image Style Transfer
- Title(参考訳): FAGStyle:Zero-shot Text-Guided Diffusion Image Style Transferのための測地面上の特徴拡張
- Authors: Yuexing Han, Liheng Ruan, Bing Wang,
- Abstract要約: イメージスタイル転送の目標は、オリジナルのコンテンツを維持しながら、スタイル参照によってガイドされたイメージをレンダリングすることである。
ゼロショットテキスト誘導拡散画像スタイル転送方式であるFAGStyleを紹介する。
提案手法は,スライディングウィンドウクロップを組み込むことにより,パッチ間の情報インタラクションを向上させる。
- 参考スコア(独自算出の注目度): 2.3293561091456283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The goal of image style transfer is to render an image guided by a style reference while maintaining the original content. Existing image-guided methods rely on specific style reference images, restricting their wider application and potentially compromising result quality. As a flexible alternative, text-guided methods allow users to describe the desired style using text prompts. Despite their versatility, these methods often struggle with maintaining style consistency, reflecting the described style accurately, and preserving the content of the target image. To address these challenges, we introduce FAGStyle, a zero-shot text-guided diffusion image style transfer method. Our approach enhances inter-patch information interaction by incorporating the Sliding Window Crop technique and Feature Augmentation on Geodesic Surface into our style control loss. Furthermore, we integrate a Pre-Shape self-correlation consistency loss to ensure content consistency. FAGStyle demonstrates superior performance over existing methods, consistently achieving stylization that retains the semantic content of the source image. Experimental results confirms the efficacy of FAGStyle across a diverse range of source contents and styles, both imagined and common.
- Abstract(参考訳): イメージスタイル転送の目標は、オリジナルのコンテンツを維持しながら、スタイル参照によってガイドされたイメージをレンダリングすることである。
既存の画像誘導方式は、特定のスタイルの参照画像に依存し、適用範囲を制限し、結果の品質を損なう可能性がある。
フレキシブルな代替手段として、テキスト誘導方式では、ユーザーはテキストプロンプトを使って所望のスタイルを記述できる。
その汎用性にもかかわらず、これらの手法はスタイルの一貫性を維持し、記述されたスタイルを正確に反映し、ターゲット画像の内容を保存するのに苦労することが多い。
これらの課題に対処するために、ゼロショットテキスト誘導拡散画像スタイル転送方式であるFAGStyleを紹介する。
Sliding Window Crop 技術とGeodesic Surface の機能拡張を私たちのスタイル制御損失に組み込むことで,パッチ間の情報インタラクションを向上する。
さらに、コンテンツ整合性を確保するために、事前の自己相関整合性損失を統合する。
FAGStyleは既存の手法よりも優れた性能を示し、ソースイメージのセマンティックな内容を保持するスタイリゼーションを一貫して達成している。
実験の結果,FAGStyleの有効性は,様々なソース内容やスタイルで実証された。
関連論文リスト
- Beyond Color and Lines: Zero-Shot Style-Specific Image Variations with Coordinated Semantics [3.9717825324709413]
スタイルは、主に色、ブラシストローク、照明といった芸術的要素の観点から検討されてきた。
本研究では,コーディネート・セマンティクスを用いた画像変化のためのゼロショット・スキームを提案する。
論文 参考訳(メタデータ) (2024-10-24T08:34:57Z) - InstantStyle-Plus: Style Transfer with Content-Preserving in Text-to-Image Generation [4.1177497612346]
スタイル転送(Style Transfer)は、視覚的なスタイルを取り入れながら、オリジナルの本質を維持するイメージを作成するために設計された革新的なプロセスである。
InstantStyle-Plusは、ターゲットスタイルをシームレスに統合しながら、オリジナルコンテンツの整合性を優先するアプローチである。
論文 参考訳(メタデータ) (2024-06-30T18:05:33Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG)は、テキストプロンプトとスタイル参照画像から画像を生成することを目的としている。
我々は、事前訓練された安定拡散を利用して、誤解釈スタイルや一貫性のない意味論といった課題に対処する新しいフレームワーク、ArtWeaverを提案する。
論文 参考訳(メタデータ) (2024-05-24T07:19:40Z) - Style Aligned Image Generation via Shared Attention [61.121465570763085]
本稿では,一連の生成画像間のスタイルアライメントを確立する技術であるStyleAlignedを紹介する。
拡散過程において、最小限の注意共有を生かして、T2Iモデル内の画像間のスタイル整合性を維持する。
本手法は,多種多様なスタイルやテキストのプロンプトにまたがって評価を行い,高品質で忠実であることを示す。
論文 参考訳(メタデータ) (2023-12-04T18:55:35Z) - StyleAdapter: A Unified Stylized Image Generation Model [97.24936247688824]
StyleAdapterは、様々なスタイリング画像を生成することができる統一型スタイリング画像生成モデルである。
T2I-adapter や ControlNet のような既存の制御可能な合成手法と統合することができる。
論文 参考訳(メタデータ) (2023-09-04T19:16:46Z) - Any-to-Any Style Transfer: Making Picasso and Da Vinci Collaborate [58.83278629019384]
スタイル転送は、コンテンツ参照のために、ある画像のスタイルを他の画像へのスタイル参照にレンダリングすることを目的としている。
既存のアプローチでは、スタイルイメージの全体的スタイルをグローバルな方法で適用するか、あるいは、スタイルイメージのローカル色とテクスチャを、事前に定義された方法でコンテンツに移行するかのいずれかである。
本稿では,Any-to-Any Style Transferを提案する。Any-to-Any Style Transferは,スタイル画像中の領域のスタイルを対話的に選択し,所定のコンテンツ領域に適用することができる。
論文 参考訳(メタデータ) (2023-04-19T15:15:36Z) - SEM-CS: Semantic CLIPStyler for Text-Based Image Style Transfer [4.588028371034406]
本稿ではセマンティックCLIPStyler(Semantic CLIPStyler)を提案する。
Sem-CSはまずコンテンツイメージを正当で非正当なオブジェクトに分割し、所定のスタイルのテキスト記述に基づいて芸術的なスタイルを転送する。
DISTS,NIMA,ユーザスタディスコアなどの実験結果から,提案手法は質的,定量的な性能に優れることが示された。
論文 参考訳(メタデータ) (2023-03-11T07:33:06Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStylerは、拡散された結果の内容とスタイルのバランスを制御するための二重拡散処理アーキテクチャである。
本稿では、逆復調処理をベースとしたコンテンツ画像に基づく学習可能なノイズを提案し、そのスタイリング結果により、コンテンツ画像の構造情報をよりよく保存する。
論文 参考訳(メタデータ) (2022-11-19T12:30:44Z) - Parameter-Free Style Projection for Arbitrary Style Transfer [64.06126075460722]
本稿では,パラメータフリー,高速,効果的なコンテンツスタイル変換のための特徴レベル変換手法であるStyle Projectionを提案する。
本稿では、任意の画像スタイルの転送にスタイル投影を利用するリアルタイムフィードフォワードモデルを提案する。
論文 参考訳(メタデータ) (2020-03-17T13:07:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。