Prompt Your Brain: Scaffold Prompt Tuning for Efficient Adaptation of fMRI Pre-trained Model
- URL: http://arxiv.org/abs/2408.10567v1
- Date: Tue, 20 Aug 2024 06:08:37 GMT
- Title: Prompt Your Brain: Scaffold Prompt Tuning for Efficient Adaptation of fMRI Pre-trained Model
- Authors: Zijian Dong, Yilei Wu, Zijiao Chen, Yichi Zhang, Yueming Jin, Juan Helen Zhou,
- Abstract summary: Scaffold Prompt Tuning (ScaPT) is a novel prompt-based framework for adapting large-scale functional magnetic resonance imaging (fMRI) pre-trained models to downstream tasks.
It has high parameter efficiency and improved performance compared to fine-tuning and baselines for prompt tuning.
ScaPT outperforms fine-tuning and multitask-based prompt tuning in neurodegenerative diseases diagnosis/prognosis and personality trait prediction.
- Score: 15.330413605539542
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce Scaffold Prompt Tuning (ScaPT), a novel prompt-based framework for adapting large-scale functional magnetic resonance imaging (fMRI) pre-trained models to downstream tasks, with high parameter efficiency and improved performance compared to fine-tuning and baselines for prompt tuning. The full fine-tuning updates all pre-trained parameters, which may distort the learned feature space and lead to overfitting with limited training data which is common in fMRI fields. In contrast, we design a hierarchical prompt structure that transfers the knowledge learned from high-resource tasks to low-resource ones. This structure, equipped with a Deeply-conditioned Input-Prompt (DIP) mapping module, allows for efficient adaptation by updating only 2% of the trainable parameters. The framework enhances semantic interpretability through attention mechanisms between inputs and prompts, and it clusters prompts in the latent space in alignment with prior knowledge. Experiments on public resting state fMRI datasets reveal ScaPT outperforms fine-tuning and multitask-based prompt tuning in neurodegenerative diseases diagnosis/prognosis and personality trait prediction, even with fewer than 20 participants. It highlights ScaPT's efficiency in adapting pre-trained fMRI models to low-resource tasks.
Related papers
- SAFE: Slow and Fast Parameter-Efficient Tuning for Continual Learning with Pre-Trained Models [26.484208658326857]
Continual learning aims to incrementally acquire new concepts in data streams while resisting forgetting previous knowledge.
With the rise of powerful pre-trained models (PTMs), there is a growing interest in training incremental learning systems.
arXiv Detail & Related papers (2024-11-04T15:34:30Z) - Self-Supervised Pre-training Tasks for an fMRI Time-series Transformer in Autism Detection [3.665816629105171]
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that encompasses a wide variety of symptoms and degrees of impairment.
We have developed a transformer-based self-supervised framework that directly analyzes time-series fMRI data without computing functional connectivity.
We show that randomly masking entire ROIs gives better model performance than randomly masking time points in the pre-training step.
arXiv Detail & Related papers (2024-09-18T20:29:23Z) - Parameter-Efficient and Memory-Efficient Tuning for Vision Transformer: A Disentangled Approach [87.8330887605381]
We show how to adapt a pre-trained Vision Transformer to downstream recognition tasks with only a few learnable parameters.
We synthesize a task-specific query with a learnable and lightweight module, which is independent of the pre-trained model.
Our method achieves state-of-the-art performance under memory constraints, showcasing its applicability in real-world situations.
arXiv Detail & Related papers (2024-07-09T15:45:04Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
This paper proposes to directly modulate the generation process of diffusion models using fMRI signals.
By training with about 67,000 fMRI-image pairs from various individuals, our model enjoys superior fMRI-to-image decoding capacity.
arXiv Detail & Related papers (2024-03-27T02:42:52Z) - Inference Stage Denoising for Undersampled MRI Reconstruction [13.8086726938161]
Reconstruction of magnetic resonance imaging (MRI) data has been positively affected by deep learning.
A key challenge remains: to improve generalisation to distribution shifts between the training and testing data.
arXiv Detail & Related papers (2024-02-12T12:50:10Z) - Skeleton2vec: A Self-supervised Learning Framework with Contextualized
Target Representations for Skeleton Sequence [56.092059713922744]
We show that using high-level contextualized features as prediction targets can achieve superior performance.
Specifically, we propose Skeleton2vec, a simple and efficient self-supervised 3D action representation learning framework.
Our proposed Skeleton2vec outperforms previous methods and achieves state-of-the-art results.
arXiv Detail & Related papers (2024-01-01T12:08:35Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - SMRD: SURE-based Robust MRI Reconstruction with Diffusion Models [76.43625653814911]
Diffusion models have gained popularity for accelerated MRI reconstruction due to their high sample quality.
They can effectively serve as rich data priors while incorporating the forward model flexibly at inference time.
We introduce SURE-based MRI Reconstruction with Diffusion models (SMRD) to enhance robustness during testing.
arXiv Detail & Related papers (2023-10-03T05:05:35Z) - GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration [62.41725951450803]
Learning-based deformable registration relies on weighted objective functions trading off registration accuracy and smoothness of the field.
We construct a registration model based on the gradient surgery mechanism, named GSMorph, to achieve a hyper parameter-free balance on multiple losses.
Our method is model-agnostic and can be merged into any deep registration network without introducing extra parameters or slowing down inference.
arXiv Detail & Related papers (2023-06-26T13:32:09Z) - Sequential Transfer Learning to Decode Heard and Imagined Timbre from
fMRI Data [0.0]
We present a sequential transfer learning framework for transformers on functional Magnetic Resonance Imaging (fMRI) data.
In the first phase, we pre-train our stacked-encoder transformer architecture on Next Thought Prediction.
In the second phase, we fine-tune the models and train additional fresh models on the supervised task of predicting whether or not two sequences of fMRI data were recorded while listening to the same musical timbre.
arXiv Detail & Related papers (2023-05-22T16:58:26Z) - Self-Supervised Pretraining on Paired Sequences of fMRI Data for
Transfer Learning to Brain Decoding Tasks [0.0]
We introduce a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data.
First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening.
Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task.
arXiv Detail & Related papers (2023-05-15T22:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.