論文の概要: Putting People in LLMs' Shoes: Generating Better Answers via Question Rewriter
- arxiv url: http://arxiv.org/abs/2408.10573v1
- Date: Tue, 20 Aug 2024 06:24:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 14:54:06.920446
- Title: Putting People in LLMs' Shoes: Generating Better Answers via Question Rewriter
- Title(参考訳): LLMのシューズに人を乗せる - 質問リライタによるより良い回答の生成
- Authors: Junhao Chen, Bowen Wang, Zhouqiang jiang, Yuta Nakashima,
- Abstract要約: 本稿では,単一ラウンドのインスタンスレベルのプロンプト最適化について述べる。
ブラックボックスLSMに対する人間の質問の信頼性を高めることにより、質問書き直しは生成した回答の品質を向上させる。
- 参考スコア(独自算出の注目度): 17.736962215696366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have demonstrated significant capabilities, particularly in the domain of question answering (QA). However, their effectiveness in QA is often undermined by the vagueness of user questions. To address this issue, we introduce single-round instance-level prompt optimization, referred to as question rewriter. By enhancing the intelligibility of human questions for black-box LLMs, our question rewriter improves the quality of generated answers. The rewriter is optimized using direct preference optimization based on feedback collected from automatic criteria for evaluating generated answers; therefore, its training does not require costly human annotations. The experiments across multiple black-box LLMs and long-form question answering (LFQA) datasets demonstrate the efficacy of our method. This paper provides a practical framework for training question rewriters and sets a precedent for future explorations in prompt optimization within LFQA tasks. Code is available at \url{https://github.com/3244we/Question-Rewriter}.
- Abstract(参考訳): 大規模言語モデル(LLM)は特に質問応答(QA)の領域において重要な機能を示している。
しかし、QAにおけるそれらの有効性は、ユーザ質問の曖昧さによって損なわれることが多い。
この問題に対処するために,質問リライタと呼ばれる単一ラウンドのインスタンスレベルのプロンプト最適化を導入する。
ブラックボックスLSMに対する人間の質問の信頼性を高めることにより、質問書き直しは生成した回答の品質を向上させる。
リライターは、生成した回答を評価するための自動基準から収集したフィードバックに基づいて、直接選好最適化を用いて最適化される。
複数のブラックボックスLSMと長文質問応答(LFQA)データセットを用いた実験により,本手法の有効性が示された。
本稿では,質問書き直しを訓練するための実践的なフレームワークを提供し,LFQAタスク内での迅速な最適化における今後の探索の先例を定めている。
コードは \url{https://github.com/3244we/Question-Rewriter} で公開されている。
関連論文リスト
- Prompt Optimization with Human Feedback [69.95991134172282]
人間のフィードバックによる迅速な最適化問題(POHF)について検討する。
我々は自動POHF(Automatic POHF)というアルゴリズムを導入する。
その結果、APOHFは、少数の好みフィードバックインスタンスを用いて、効率的に適切なプロンプトを見つけることができることがわかった。
論文 参考訳(メタデータ) (2024-05-27T16:49:29Z) - Aligning LLMs through Multi-perspective User Preference Ranking-based Feedback for Programming Question Answering [16.394601658945625]
Code Community Question Answering (CCQA)は、プログラミング関連の問題に取り組み、ソフトウェア工学と学術研究の生産性を高める。
RLHF(Reinforcement Learning from Human Feedback)の最近の進歩は、Large Language Models(LLM)の微調整プロセスを変え、人間の振る舞いを忠実に模倣する応答を生み出している。
本稿では,マルチパースペクティブなユーザ嗜好ランク付けに基づくプログラミング質問回答(ALMupQA)に基づくALMupQA(Aligning LLMs)という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-05-27T14:21:31Z) - Crafting Interpretable Embeddings by Asking LLMs Questions [89.49960984640363]
大規模言語モデル(LLM)は、自然言語処理タスクの増大に対して、テキスト埋め込みを急速に改善した。
質問応答埋め込み (QA-Emb) を導入し, 各特徴がLLMに対して質問された質問に対する回答を表す。
我々はQA-Embを用いて、言語刺激に対するfMRIボクセル応答を予測するための解釈可能なモデルを柔軟に生成する。
論文 参考訳(メタデータ) (2024-05-26T22:30:29Z) - S-EQA: Tackling Situational Queries in Embodied Question Answering [48.43453390717167]
本研究では,家庭環境における状況問合せ(S-EQA)による身体的質問回答の課題を提示し,解決する。
まず, LLMの出力を包み込み, ユニークなコンセンサス・クエリと対応するコンセンサス・オブジェクトのデータセットを作成する, プロンプト・ジェネレート・評価手法を提案する。
本稿では,VQA(Visual Question Answering)において生成したオブジェクトコンセンサスからフレーム化されたクエリを用いて,状況に応じた質問に対して直接回答する際の精度を15.31%改善したことを報告した。
論文 参考訳(メタデータ) (2024-05-08T00:45:20Z) - Enhancing Answer Selection in Community Question Answering with
Pre-trained and Large Language Models [0.9065034043031668]
まず,質問応答型クロスアテンションネットワーク(QAN)を提案する。
次に,大規模言語モデル(LLM)を用いて,知識拡張による回答選択を行う。
実験の結果、QANモデルが2つのデータセット、SemEval2015とSemEval 2017の最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-11-29T10:24:50Z) - Rescue: Ranking LLM Responses with Partial Ordering to Improve Response Generation [28.89786334298637]
ランキングメトリクスを用いたLCMの最適化手法を開発した。
従来の完全順序付けではなく、部分順序付けを提唱する。
ベンチマークデータセットを用いて,システムの改善された応答生成能力を検証した。
論文 参考訳(メタデータ) (2023-11-15T17:27:14Z) - Improving Zero-shot Visual Question Answering via Large Language Models
with Reasoning Question Prompts [22.669502403623166]
本稿では,VQAタスクに対する推論質問プロンプトを提案する。
自己完結した質問は、教師なし質問セットモジュールを介して推論された質問プロンプトとして生成する。
各推論質問は、元の質問の意図を明確に示す。
そして、回答整合性として働く信頼度スコアに関連する候補回答をLSMに入力する。
論文 参考訳(メタデータ) (2023-11-15T15:40:46Z) - SQUARE: Automatic Question Answering Evaluation using Multiple Positive
and Negative References [73.67707138779245]
SQuArE (Sentence-level QUestion AnsweRing Evaluation) という新しい評価指標を提案する。
文レベルの抽出(回答選択)と生成(GenQA)の両方のQAシステムでSQuArEを評価する。
論文 参考訳(メタデータ) (2023-09-21T16:51:30Z) - Query Rewriting for Retrieval-Augmented Large Language Models [139.242907155883]
大規模言語モデル(LLM)は、検索対象のパイプラインで強力なブラックボックスリーダーを動作させる。
この作業では、検索拡張LDMに対する以前の検索テーマ読み込みの代わりに、新しいフレームワークであるRewrite-Retrieve-Readを導入する。
論文 参考訳(メタデータ) (2023-05-23T17:27:50Z) - Read before Generate! Faithful Long Form Question Answering with Machine
Reading [77.17898499652306]
LFQA(Long-form Question answering)は、ある質問に対する段落長の回答を生成することを目的としている。
生成と機械読取を協調的にモデル化する新しいエンドツーエンドフレームワークを提案する。
論文 参考訳(メタデータ) (2022-03-01T10:41:17Z) - Exploring Question-Specific Rewards for Generating Deep Questions [42.243227323241584]
我々は、生成した質問の流布度、妥当性、回答可能性を改善するために、ターゲットとする3つの異なる報酬を設計する。
質問固有報酬の最適化は、一般的に自動評価指標の性能向上につながる。
論文 参考訳(メタデータ) (2020-11-02T16:37:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。