論文の概要: Interactive Counterfactual Generation for Univariate Time Series
- arxiv url: http://arxiv.org/abs/2408.10633v1
- Date: Tue, 20 Aug 2024 08:19:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 14:34:27.231068
- Title: Interactive Counterfactual Generation for Univariate Time Series
- Title(参考訳): 一様時系列の相互対数生成
- Authors: Udo Schlegel, Julius Rauscher, Daniel A. Keim,
- Abstract要約: 私たちのアプローチは、ディープラーニングモデルの意思決定プロセスの透明性と理解を高めることを目的としています。
提案手法は,提案するデータポイントとユーザインタラクションを抽象化することにより,直感的な事実説明の生成を容易にする。
本手法をECG5000ベンチマークデータセットを用いて検証し,解釈可能性と時系列分類のユーザ理解の大幅な向上を実証した。
- 参考スコア(独自算出の注目度): 7.331969743532515
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an interactive methodology for generating counterfactual explanations for univariate time series data in classification tasks by leveraging 2D projections and decision boundary maps to tackle interpretability challenges. Our approach aims to enhance the transparency and understanding of deep learning models' decision processes. The application simplifies the time series data analysis by enabling users to interactively manipulate projected data points, providing intuitive insights through inverse projection techniques. By abstracting user interactions with the projected data points rather than the raw time series data, our method facilitates an intuitive generation of counterfactual explanations. This approach allows for a more straightforward exploration of univariate time series data, enabling users to manipulate data points to comprehend potential outcomes of hypothetical scenarios. We validate this method using the ECG5000 benchmark dataset, demonstrating significant improvements in interpretability and user understanding of time series classification. The results indicate a promising direction for enhancing explainable AI, with potential applications in various domains requiring transparent and interpretable deep learning models. Future work will explore the scalability of this method to multivariate time series data and its integration with other interpretability techniques.
- Abstract(参考訳): 本稿では,2次元投影法と決定境界マップを利用して,一変量時系列データに対して,解釈可能性問題に対処する対話的手法を提案する。
私たちのアプローチは、ディープラーニングモデルの意思決定プロセスの透明性と理解を高めることを目的としています。
このアプリケーションは、ユーザが対話的に投影されたデータポイントを操作できるようにし、逆投影技術による直感的な洞察を提供することにより、時系列データ解析を単純化する。
生の時系列データではなく、予測されたデータポイントとのユーザインタラクションを抽象化することにより、本手法は直感的な反実的説明の生成を容易にする。
このアプローチにより、単変量時系列データのより直接的な探索が可能になり、ユーザーはデータポイントを操作でき、仮説的なシナリオの潜在的な結果を理解することができる。
本手法をECG5000ベンチマークデータセットを用いて検証し,解釈可能性と時系列分類のユーザ理解の大幅な向上を実証した。
この結果は、さまざまな分野の潜在的な応用において、透明で解釈可能なディープラーニングモデルを必要とする、説明可能なAIを強化するための有望な方向を示している。
今後,この手法の時系列データを多変量化するためのスケーラビリティと,他の解釈可能性技術との統合について検討する。
関連論文リスト
- Interactive dense pixel visualizations for time series and model attribution explanations [8.24039921933289]
DAVOTSは、生の時系列データ、ニューラルネットワークのアクティベーション、高密度ピクセル可視化における属性を探索する、インタラクティブなビジュアル分析アプローチである。
可視化されたデータドメインにクラスタリングアプローチを適用し、グループをハイライトし、個々のデータ探索と組み合わせたデータ探索のための順序付け戦略を示す。
論文 参考訳(メタデータ) (2024-08-27T14:02:21Z) - TimeTuner: Diagnosing Time Representations for Time-Series Forecasting
with Counterfactual Explanations [3.8357850372472915]
本稿では,モデル行動が局所化,定常性,時系列表現の相関とどのように関連しているかをアナリストが理解するために,新しいビジュアル分析フレームワークであるTimeTunerを提案する。
TimeTunerは時系列表現を特徴付けるのに役立ち、機能エンジニアリングのプロセスを導くのに役立ちます。
論文 参考訳(メタデータ) (2023-07-19T11:40:15Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
コントラスト学習の鍵となる要素は、いくつかの先行を示唆する適切な拡張を選択して、実現可能な正のサンプルを構築することである。
対照的な学習タスクやデータセットに意味のある時系列データの増大をどうやって見つけるかは、未解決の問題である。
本稿では,時系列表現学習のための最適な拡張を適応的に選択する情報認識拡張を用いた新しいコントラスト学習手法であるInfoTSを提案する。
論文 参考訳(メタデータ) (2023-03-21T15:02:50Z) - Multi-Task Self-Supervised Time-Series Representation Learning [3.31490164885582]
時系列表現学習は、時間的ダイナミクスとスパースラベルを持つデータから表現を抽出することができる。
自己教師型タスクの利点を組み合わせた時系列表現学習手法を提案する。
本稿では,時系列分類,予測,異常検出という3つのダウンストリームタスクの枠組みについて検討する。
論文 参考訳(メタデータ) (2023-03-02T07:44:06Z) - Investigating Enhancements to Contrastive Predictive Coding for Human
Activity Recognition [7.086647707011785]
コントラスト予測符号化(Contrastive Predictive Coding, CPC)は、時系列データの特性を活用して効果的な表現を学習する手法である。
本研究では,アーキテクチャ,アグリゲータネットワーク,今後のタイムステップ予測を体系的に検討し,CPCの強化を提案する。
提案手法は6つのターゲットデータセットのうち4つを大幅に改善し,アプリケーションシナリオを広範囲に拡張する能力を示した。
論文 参考訳(メタデータ) (2022-11-11T12:54:58Z) - FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality
Assessment [93.09267863425492]
競争力のあるスポーツビデオにおける行動の高レベル意味論と内部時間構造の両方を理解することが、予測を正確かつ解釈可能なものにする鍵である、と我々は主張する。
本研究では,多様なダイビングイベントに対して,アクションプロシージャに関する詳細なアノテーションを付加した,ファインディビングと呼ばれる詳細なデータセットを構築した。
論文 参考訳(メタデータ) (2022-04-07T17:59:32Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
我々は最近導入された2D-Attentionの上に構築し、注意学習方法論を再構築する。
本稿では,関連情報を強調した2次元目視マスクを学習する機能・時間的アテンション機構を提案する。
論文 参考訳(メタデータ) (2022-01-26T17:54:14Z) - PSEUDo: Interactive Pattern Search in Multivariate Time Series with
Locality-Sensitive Hashing and Relevance Feedback [3.347485580830609]
PSEUDoは、マルチトラックシーケンシャルデータにおける視覚パターンを探索するための適応的機能学習技術である。
提案アルゴリズムは,サブ線形学習と推論時間を特徴とする。
我々は,PSEUDoの効率,精度,操縦性において優位性を示す。
論文 参考訳(メタデータ) (2021-04-30T13:00:44Z) - Visualising Deep Network's Time-Series Representations [93.73198973454944]
機械学習モデルの普及にもかかわらず、多くの場合、モデルの内部で起きていることに関する洞察のないブラックボックスとして運用される。
本稿では,多次元時系列データの可視化に着目し,この問題に対処する手法を提案する。
高周波在庫市場データセットの実験は、この方法が迅速かつ識別可能な可視化を提供することを示しています。
論文 参考訳(メタデータ) (2021-03-12T09:53:34Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z) - Predicting Temporal Sets with Deep Neural Networks [50.53727580527024]
本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
論文 参考訳(メタデータ) (2020-06-20T03:29:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。