論文の概要: Predicting Temporal Sets with Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2006.11483v4
- Date: Wed, 8 Jul 2020 01:58:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-18 22:01:14.590449
- Title: Predicting Temporal Sets with Deep Neural Networks
- Title(参考訳): 深部ニューラルネットワークによる時間集合の予測
- Authors: Le Yu, Leilei Sun, Bowen Du, Chuanren Liu, Hui Xiong, Weifeng Lv
- Abstract要約: 本稿では,時間集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
ユニークな視点は、セットレベルの共起グラフを構築することで要素関係を学ぶことである。
我々は,要素や集合の時間依存性を適応的に学習するアテンションベースのモジュールを設計する。
- 参考スコア(独自算出の注目度): 50.53727580527024
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a sequence of sets, where each set contains an arbitrary number of
elements, the problem of temporal sets prediction aims to predict the elements
in the subsequent set. In practice, temporal sets prediction is much more
complex than predictive modelling of temporal events and time series, and is
still an open problem. Many possible existing methods, if adapted for the
problem of temporal sets prediction, usually follow a two-step strategy by
first projecting temporal sets into latent representations and then learning a
predictive model with the latent representations. The two-step approach often
leads to information loss and unsatisfactory prediction performance. In this
paper, we propose an integrated solution based on the deep neural networks for
temporal sets prediction. A unique perspective of our approach is to learn
element relationship by constructing set-level co-occurrence graph and then
perform graph convolutions on the dynamic relationship graphs. Moreover, we
design an attention-based module to adaptively learn the temporal dependency of
elements and sets. Finally, we provide a gated updating mechanism to find the
hidden shared patterns in different sequences and fuse both static and dynamic
information to improve the prediction performance. Experiments on real-world
data sets demonstrate that our approach can achieve competitive performances
even with a portion of the training data and can outperform existing methods
with a significant margin.
- Abstract(参考訳): 各集合が任意の数の要素を含む集合列が与えられたとき、時間集合予測の問題は、次の集合の要素を予測することを目的としている。
実際には、時間的集合予測は時間的事象や時系列の予測モデルよりもはるかに複雑であり、まだ未解決の問題である。
時間的集合予測の問題に適応した多くの既存の手法は、通常、まず時間的集合を潜在表現に投影し、次に潜在表現で予測モデルを学ぶことによって2段階の戦略に従う。
2段階のアプローチはしばしば情報損失と不満足な予測性能をもたらす。
本稿では,時間的集合予測のためのディープニューラルネットワークに基づく統合解を提案する。
このアプローチのユニークな視点は、集合レベルの共起グラフを構築して要素関係を学習し、動的関係グラフ上でグラフ畳み込みを実行することである。
さらに,要素や集合の時間依存性を適応的に学習するアテンションベースモジュールを設計する。
最後に、異なるシーケンスで隠れた共有パターンを見つけ、静的情報と動的情報を融合して予測性能を向上させるゲート更新機構を提供する。
実世界のデータセットに関する実験は、トレーニングデータの一部であっても、我々のアプローチが競争力のあるパフォーマンスを達成でき、既存のメソッドをかなりのマージンで上回ることができることを示している。
関連論文リスト
- From Link Prediction to Forecasting: Information Loss in Batch-based Temporal Graph Learning [0.716879432974126]
バッチ指向評価の適合性はデータセットの特性に依存することを示す。
我々は、動的リンク予測をリンク予測タスクとして再構成し、データに存在する時間情報のより良い説明を行う。
論文 参考訳(メタデータ) (2024-06-07T12:45:12Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Taming Local Effects in Graph-based Spatiotemporal Forecasting [28.30604130617646]
時相グラフニューラルネットワークは時系列予測に有効であることが示されている。
本稿では,グラフに基づく時間的予測におけるグローバル性と局所性の間の相互作用を理解することを目的とする。
このようなアーキテクチャにトレーニング可能なノード埋め込みを組み込むことを合理化するための方法論的枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-08T14:18:56Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
時系列の進化的・マルチスケール相互作用をモデル化する方法を示す。
特に、まず、拡張畳み込みと協調して、スケール固有の相関を捉える階層グラフ構造を提供する。
最終的な予測を得るために上記のコンポーネントを統合するために、統合ニューラルネットワークが提供される。
論文 参考訳(メタデータ) (2022-06-28T08:11:12Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - MECATS: Mixture-of-Experts for Quantile Forecasts of Aggregated Time
Series [11.826510794042548]
我々はtexttMECATS という異種の専門家フレームワークを混合して導入する。
集約階層を通じて関連付けられた時系列の集合の値を同時に予測する。
異なる種類の予測モデルを個別の専門家として使用することで、各モデルの形式を対応する時系列の性質に合わせて調整することができる。
論文 参考訳(メタデータ) (2021-12-22T05:05:30Z) - Time Series is a Special Sequence: Forecasting with Sample Convolution
and Interaction [9.449017120452675]
時系列データ(英: time series)とは、時系列データの一種で、時系列で記録された観測の集合である。
既存のディープラーニング技術では、時系列解析にジェネリックシーケンスモデルを使用しており、そのユニークな性質を無視している。
本稿では,新しいニューラルネットワークアーキテクチャを提案し,時系列予測問題に適用し,時間的モデリングのための複数の解像度でサンプル畳み込みと相互作用を行う。
論文 参考訳(メタデータ) (2021-06-17T08:15:04Z) - A machine learning approach for forecasting hierarchical time series [4.157415305926584]
階層時系列を予測するための機械学習手法を提案する。
予測整合は予測を調整し、階層をまたいで一貫性を持たせるプロセスである。
我々は、階層構造をキャプチャする情報を抽出するディープニューラルネットワークの能力を利用する。
論文 参考訳(メタデータ) (2020-05-31T22:26:16Z) - Learn to Predict Sets Using Feed-Forward Neural Networks [63.91494644881925]
本稿では、ディープフィードフォワードニューラルネットワークを用いた設定予測の課題に対処する。
未知の置換と基数を持つ集合を予測するための新しい手法を提案する。
関連視覚問題に対する集合定式化の有効性を実証する。
論文 参考訳(メタデータ) (2020-01-30T01:52:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。