UWF-RI2FA: Generating Multi-frame Ultrawide-field Fluorescein Angiography from Ultrawide-field Retinal Imaging Improves Diabetic Retinopathy Stratification
- URL: http://arxiv.org/abs/2408.10636v2
- Date: Tue, 27 Aug 2024 16:19:22 GMT
- Title: UWF-RI2FA: Generating Multi-frame Ultrawide-field Fluorescein Angiography from Ultrawide-field Retinal Imaging Improves Diabetic Retinopathy Stratification
- Authors: Ruoyu Chen, Kezheng Xu, Kangyan Zheng, Weiyi Zhang, Yan Lu, Danli Shi, Mingguang He,
- Abstract summary: We aim to acquire dye-free UWF-FA images from noninvasive UWF retinal imaging (UWF-RI) using generative artificial intelligence (GenAI)
A total of 18,321 UWF-FA images of different phases were registered with corresponding UWF-RI images and fed into a generative adversarial networks (GAN)-based model for training.
The quality of generated UWF-FA images was evaluated through quantitative metrics and human evaluation.
- Score: 10.833651195216557
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ultrawide-field fluorescein angiography (UWF-FA) facilitates diabetic retinopathy (DR) detection by providing a clear visualization of peripheral retinal lesions. However, the intravenous dye injection with potential risks hamper its application. We aim to acquire dye-free UWF-FA images from noninvasive UWF retinal imaging (UWF-RI) using generative artificial intelligence (GenAI) and evaluate its effectiveness in DR screening. A total of 18,321 UWF-FA images of different phases were registered with corresponding UWF-RI images and fed into a generative adversarial networks (GAN)-based model for training. The quality of generated UWF-FA images was evaluated through quantitative metrics and human evaluation. The DeepDRiD dataset was used to externally assess the contribution of generated UWF-FA images to DR classification, using area under the receiver operating characteristic curve (AUROC) as outcome metrics. The generated early, mid, and late phase UWF-FA images achieved high authenticity, with multi-scale similarity scores ranging from 0.70 to 0.91 and qualitative visual scores ranging from 1.64 to 1.98 (1=real UWF-FA quality). In fifty randomly selected images, 56% to 76% of the generated images were difficult to distinguish from real images in the Turing test. Moreover, adding these generated UWF-FA images for DR classification significantly increased the AUROC from 0.869 to 0.904 compared to the baseline model using UWF-RI images (P < .001). The model successfully generates realistic multi-frame UWF-FA images for enhancing DR stratification without intravenous dye injection.
Related papers
- StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - RIGID: A Training-free and Model-Agnostic Framework for Robust AI-Generated Image Detection [60.960988614701414]
RIGID is a training-free and model-agnostic method for robust AI-generated image detection.
RIGID significantly outperforms existing trainingbased and training-free detectors.
arXiv Detail & Related papers (2024-05-30T14:49:54Z) - UWAFA-GAN: Ultra-Wide-Angle Fluorescein Angiography Transformation via Multi-scale Generation and Registration Enhancement [17.28459176559761]
UWF fluorescein angiography (UWF-FA) requires the administration of a fluorescent dye via injection into the patient's hand or elbow.
To mitigate potential adverse effects associated with injections, researchers have proposed the development of cross-modality medical image generation algorithms.
We introduce a novel conditional generative adversarial network (UWAFA-GAN) to synthesize UWF-FA from UWF-SLO.
arXiv Detail & Related papers (2024-05-01T14:27:43Z) - Source-free Active Domain Adaptation for Diabetic Retinopathy Grading
Based on Ultra-wide-field Fundus Image [4.679304803181914]
Domain adaptation (DA) has been widely applied in the diabetic retinopathy (DR) grading of unannotated ultra-wide-field (UWF) fundus images.
We propose a novel source-free active domain adaptation (SFADA) in this paper to tackle the DR grading problem itself.
Our proposed SFADA achieves state-of-the-art DR grading performance, increasing accuracy by 20.9% and quadratic weighted kappa by 18.63%.
arXiv Detail & Related papers (2023-09-19T13:52:06Z) - UWAT-GAN: Fundus Fluorescein Angiography Synthesis via Ultra-wide-angle
Transformation Multi-scale GAN [1.165405976310311]
Fundus photography is an essential examination for clinical and differential diagnosis of fundus diseases.
Current methods in fundus imaging could not produce high-resolution images and are unable to capture tiny vascular lesion areas.
This paper proposes a novel conditional generative adversarial network (UWAT-GAN) to synthesize UWF-FA from UWF-SLO.
arXiv Detail & Related papers (2023-07-21T12:23:39Z) - Automated Artifact Detection in Ultra-widefield Fundus Photography of
Patients with Sickle Cell Disease [4.4400645551116815]
The aim of this study was to create an automated algorithm for UWF-FP artifact classification.
The accuracy for each class was Eyelash Present at 83.7%, Lower Eyelid Obstructing at 83.7%, Upper Eyelid Obstructing at 98.0%, Image Too Dark at 77.6%, Dark Artifact at 93.9%, and Image Not Centered at 91.8%.
arXiv Detail & Related papers (2023-07-11T20:17:47Z) - Uncertainty-inspired Open Set Learning for Retinal Anomaly
Identification [71.06194656633447]
We establish an uncertainty-inspired open-set (UIOS) model, which was trained with fundus images of 9 retinal conditions.
Our UIOS model with thresholding strategy achieved an F1 score of 99.55%, 97.01% and 91.91% for the internal testing set.
UIOS correctly predicted high uncertainty scores, which would prompt the need for a manual check in the datasets of non-target categories retinal diseases, low-quality fundus images, and non-fundus images.
arXiv Detail & Related papers (2023-04-08T10:47:41Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - Vision Transformers for femur fracture classification [59.99241204074268]
The Vision Transformer (ViT) was able to correctly predict 83% of the test images.
Good results were obtained in sub-fractures with the largest and richest dataset ever.
arXiv Detail & Related papers (2021-08-07T10:12:42Z) - Leveraging Regular Fundus Images for Training UWF Fundus Diagnosis
Models via Adversarial Learning and Pseudo-Labeling [29.009663623719064]
Ultra-widefield (UWF) 200degreefundus imaging by Optos cameras has gradually been introduced.
Regular fundus images contain a large amount of high-quality and well-annotated data.
Due to the domain gap, models trained by regular fundus images to recognize UWF fundus images perform poorly.
We propose the use of a modified cycle generative adversarial network (CycleGAN) model to bridge the gap between regular and UWF fundus.
arXiv Detail & Related papers (2020-11-27T16:25:30Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.