論文の概要: Accelerated training of deep learning surrogate models for surface displacement and flow, with application to MCMC-based history matching of CO2 storage operations
- arxiv url: http://arxiv.org/abs/2408.10717v1
- Date: Tue, 20 Aug 2024 10:31:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 14:04:52.046875
- Title: Accelerated training of deep learning surrogate models for surface displacement and flow, with application to MCMC-based history matching of CO2 storage operations
- Title(参考訳): 表面変位と流れの深層学習サロゲートモデルの高速化とMCMCによるCO2貯蔵運転履歴マッチングへの応用
- Authors: Yifu Han, Francois P. Hamon, Louis J. Durlofsky,
- Abstract要約: 本研究では,CO2飽和度,圧力,表面変位を予測し,炭素貯蔵操作の履歴マッチングに用いるための新しいサロゲートモデリングフレームワークを提案する。
ここでのトレーニングには、多数の安価なフローオンリーのシミュレーションと、結合された実行回数のはるかに少ない組み合わせが含まれる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning surrogate modeling shows great promise for subsurface flow applications, but the training demands can be substantial. Here we introduce a new surrogate modeling framework to predict CO2 saturation, pressure and surface displacement for use in the history matching of carbon storage operations. Rather than train using a large number of expensive coupled flow-geomechanics simulation runs, training here involves a large number of inexpensive flow-only simulations combined with a much smaller number of coupled runs. The flow-only runs use an effective rock compressibility, which is shown to provide accurate predictions for saturation and pressure for our system. A recurrent residual U-Net architecture is applied for the saturation and pressure surrogate models, while a new residual U-Net model is introduced to predict surface displacement. The surface displacement surrogate accepts, as inputs, geomodel quantities along with saturation and pressure surrogate predictions. Median relative error for a diverse test set is less than 4% for all variables. The surrogate models are incorporated into a hierarchical Markov chain Monte Carlo history matching workflow. Surrogate error is included using a new treatment involving the full model error covariance matrix. A high degree of prior uncertainty, with geomodels characterized by uncertain geological scenario parameters (metaparameters) and associated realizations, is considered. History matching results for a synthetic true model are generated using in-situ monitoring-well data only, surface displacement data only, and both data types. The enhanced uncertainty reduction achieved with both data types is quantified. Posterior saturation and surface displacement fields are shown to correspond well with the true solution.
- Abstract(参考訳): 深層学習サロゲートモデリングは地下流れのアプリケーションにとって大きな可能性を秘めている。
ここでは,CO2飽和度,圧力,表面変位を予測し,炭素貯蔵操作の履歴マッチングに用いるための新しい代理モデリングフレームワークを提案する。
ここでのトレーニングは、大量の高価な結合型フロー・ジオメカニクス・シミュレーション・ランを使用する代わりに、多数の安価なフローオンリー・シミュレーションと、はるかに少ない結合型ランを併用する。
流れのみの走行では, 実効的な岩盤圧縮率を用い, 飽和と圧力の正確な予測を行うことができた。
飽和および圧力代理モデルに連続した残留U-Netアーキテクチャを適用し,新しい残留U-Netモデルを導入して表面変位を予測する。
表面変位サロゲートは、飽和と圧力サロゲート予測とともに入力、ジオモデル量として受け入れる。
多様なテストセットの中間相対誤差は、すべての変数に対して4%未満である。
代理モデルは階層的なマルコフ連鎖モンテカルロ履歴マッチングワークフローに組み込まれる。
代理誤差は、完全モデル誤差共分散行列を含む新しい処理によって含まれる。
未確定な地質シナリオパラメータ(メタパラメータ)と関連する実現を特徴とする地形モデルによる事前不確実性の高度化が検討されている。
In-situ monitoring-well data only, surface shift data only, both data types を用いて合成真理モデルの履歴マッチング結果を生成する。
両データタイプで達成した不確実性低減の強化を定量化する。
後方飽和と表面変位場は真の解とよく一致している。
関連論文リスト
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
我々は、ゼロショットスパースミクチャー(SMILE)と呼ばれるモデル融合に対する革新的なアプローチを提案する。
SMILEは、余分なデータやさらなるトレーニングなしに、ソースモデルをMoEモデルにアップスケーリングできる。
画像分類やテキスト生成タスクなど,さまざまなシナリオに対して,フル微調整とLoRA微調整を用いて広範な実験を行う。
論文 参考訳(メタデータ) (2024-08-19T17:32:15Z) - Latent diffusion models for parameterization and data assimilation of facies-based geomodels [0.0]
拡散モデルは、ランダムノイズを特徴とする入力場から新しい地質学的実現を生成するために訓練される。
遅延拡散モデルは、ジオモデリングソフトウェアからのサンプルと視覚的に整合した実現を提供する。
論文 参考訳(メタデータ) (2024-06-21T01:32:03Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
本稿では,自己消費ループ内で生成モデルを訓練する新たな課題に取り組む。
我々は,このトレーニングが将来のモデルで学習したデータ分布に与える影響を厳格に評価するための理論的枠組みを構築した。
カーネル密度推定の結果は,混合データトレーニングがエラー伝播に与える影響など,微妙な洞察を与える。
論文 参考訳(メタデータ) (2024-02-19T02:08:09Z) - History Matching for Geological Carbon Storage using Data-Space
Inversion with Spatio-Temporal Data Parameterization [0.0]
データ空間インバージョン(DSI)では、履歴にマッチした興味の量は、後続のジオモデルを構築することなく直接推測される。
これは、ベイズの設定内でのO(1000)事前シミュレーション結果、データパラメータ化、および後続サンプリングのセットを用いて効率よく達成される。
新たなパラメータ化では、次元縮小のための対向オートエンコーダ(AAE)と畳み込み長短期メモリ(convLSTM)ネットワークを使用して、圧力場と飽和場の空間分布と時間的進化を表す。
論文 参考訳(メタデータ) (2023-10-05T00:50:06Z) - Surrogate Model for Geological CO2 Storage and Its Use in Hierarchical
MCMC History Matching [0.0]
我々は、最近導入されたR-U-Netサロゲートモデルを拡張し、幅広い地質シナリオから引き出されたジオモデルの実現を取り扱う。
本研究では, 人工真理モデルにおける観測井の観測データを用いて, 地質的不確実性を大幅に低減することを示した。
論文 参考訳(メタデータ) (2023-08-11T18:29:28Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
本稿では,物理系の観測可能な応答のサロゲートモデルの精度を向上させる手法を提案する。
本研究では,定常水理応答のBasis Adaptation (BA)法による代理モデル構築に提案手法を適用した。
論文 参考訳(メタデータ) (2023-07-05T18:14:38Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Learning Large-scale Subsurface Simulations with a Hybrid Graph Network
Simulator [57.57321628587564]
本研究では3次元地下流体の貯留層シミュレーションを学習するためのハイブリッドグラフネットワークシミュレータ (HGNS) を提案する。
HGNSは、流体の進化をモデル化する地下グラフニューラルネットワーク(SGNN)と、圧力の進化をモデル化する3D-U-Netで構成されている。
産業標準地下フローデータセット(SPE-10)と1100万セルを用いて,HGNSが標準地下シミュレータの18倍の推算時間を短縮できることを実証した。
論文 参考訳(メタデータ) (2022-06-15T17:29:57Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
そこで、データ多様性を最適化可能な目的として明示的にモデル化するContrastive Model Inversionを提案します。
我々の主な観察では、同じ量のデータの制約の下では、高いデータの多様性は、通常より強いインスタンス識別を示す。
CIFAR-10, CIFAR-100, Tiny-ImageNetを用いた実験により, 生成したデータを知識蒸留に使用する場合, CMIは極めて優れた性能を示すことが示された。
論文 参考訳(メタデータ) (2021-05-18T15:13:00Z) - A Deep Learning-Accelerated Data Assimilation and Forecasting Workflow
for Commercial-Scale Geologic Carbon Storage [2.464972164779053]
本稿では,多孔質中流挙動の物理的理解を深層学習技術で活用し,高速な履歴マッチング・貯留層応答予測ワークフローを開発することを提案する。
マルチウェルインジェクション下での動的圧力とCO2配管幅を予測するための代理モデルを開発した。
このワークフローは、メインストリームの個人ワークステーションで1時間以内で、履歴マッチングと不確実な定量化による貯蓄予測を完了させることができる。
論文 参考訳(メタデータ) (2021-05-09T16:38:29Z) - Deep-learning-based coupled flow-geomechanics surrogate model for CO$_2$
sequestration [4.635171370680939]
3次元リカレントr-u-netモデルは、深い畳み込みとリカレントニューラルネットワークを組み合わせて、飽和、圧力、表面変位場の空間分布と時間変化を捉える。
サーロゲートモデルは、貯留層内の3D CO2飽和と圧力場、および地球の表面の2D変位マップを予測するために訓練されています。
論文 参考訳(メタデータ) (2021-05-04T07:34:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。