Quantum Artificial Intelligence: A Brief Survey
- URL: http://arxiv.org/abs/2408.10726v1
- Date: Tue, 20 Aug 2024 10:55:17 GMT
- Title: Quantum Artificial Intelligence: A Brief Survey
- Authors: Matthias Klusch, Jörg Lässig, Daniel Müssig, Antonio Macaluso, Frank K. Wilhelm,
- Abstract summary: Quantum Artificial Intelligence (QAI) is the intersection of quantum computing and AI.
We provide a brief overview of what has been achieved in QAI so far and point to some open questions for future research.
- Score: 0.3495246564946556
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum Artificial Intelligence (QAI) is the intersection of quantum computing and AI, a technological synergy with expected significant benefits for both. In this paper, we provide a brief overview of what has been achieved in QAI so far and point to some open questions for future research. In particular, we summarize some major key findings on the feasability and the potential of using quantum computing for solving computationally hard problems in various subfields of AI, and vice versa, the leveraging of AI methods for building and operating quantum computing devices.
Related papers
- Quantum Machine Learning: An Interplay Between Quantum Computing and Machine Learning [54.80832749095356]
Quantum machine learning (QML) is a rapidly growing field that combines quantum computing principles with traditional machine learning.
This paper introduces quantum computing for the machine learning paradigm, where variational quantum circuits are used to develop QML architectures.
arXiv Detail & Related papers (2024-11-14T12:27:50Z) - A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - Quantum Computing: Vision and Challenges [16.50566018023275]
We discuss cutting-edge developments in quantum computer hardware advancement and subsequent advances in quantum cryptography, quantum software, and high-scalability quantum computers.
Many potential challenges and exciting new trends for quantum technology research and development are highlighted in this paper for a broader debate.
arXiv Detail & Related papers (2024-03-04T17:33:18Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Reliable AI: Does the Next Generation Require Quantum Computing? [71.84486326350338]
We show that digital hardware is inherently constrained in solving problems about optimization, deep learning, or differential equations.
In contrast, analog computing models, such as the Blum-Shub-Smale machine, exhibit the potential to surmount these limitations.
arXiv Detail & Related papers (2023-07-03T19:10:45Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum Computing for Location Determination [6.141741864834815]
We introduce an example for the expected gain of using quantum algorithms for location determination research.
The proposed quantum algorithm has a complexity that is exponentially better than its classical algorithm version, both in space and running time.
We discuss both software and hardware research challenges and opportunities that researchers can build on to explore this exciting new domain.
arXiv Detail & Related papers (2021-06-11T15:39:35Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - The Holy Grail of Quantum Artificial Intelligence: Major Challenges in
Accelerating the Machine Learning Pipeline [0.0]
We discuss the synergetic connection between quantum computing and artificial intelligence.
After surveying current approaches to quantum artificial intelligence, we deduce four major challenges for the future of quantum artificial intelligence.
arXiv Detail & Related papers (2020-04-29T09:07:05Z) - Approximate Approximation on a Quantum Annealer [13.66711311825402]
Many problems of industrial interest are NP-complete, and quickly exhaust resources of computational devices with increasing input sizes.
Quantumnealers (QA) are physical devices that aim at this class of problems by exploiting quantum mechanical properties.
arXiv Detail & Related papers (2020-04-20T13:15:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.