Approximate Approximation on a Quantum Annealer
- URL: http://arxiv.org/abs/2004.09267v1
- Date: Mon, 20 Apr 2020 13:15:20 GMT
- Title: Approximate Approximation on a Quantum Annealer
- Authors: Irmi Sax and Sebastian Feld and Sebastian Zielinski and Thomas Gabor
and Claudia Linnhoff-Popien and Wolfgang Mauerer
- Abstract summary: Many problems of industrial interest are NP-complete, and quickly exhaust resources of computational devices with increasing input sizes.
Quantumnealers (QA) are physical devices that aim at this class of problems by exploiting quantum mechanical properties.
- Score: 13.66711311825402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many problems of industrial interest are NP-complete, and quickly exhaust
resources of computational devices with increasing input sizes. Quantum
annealers (QA) are physical devices that aim at this class of problems by
exploiting quantum mechanical properties of nature. However, they compete with
efficient heuristics and probabilistic or randomised algorithms on classical
machines that allow for finding approximate solutions to large NP-complete
problems. While first implementations of QA have become commercially available,
their practical benefits are far from fully explored. To the best of our
knowledge, approximation techniques have not yet received substantial
attention. In this paper, we explore how problems' approximate versions of
varying degree can be systematically constructed for quantum annealer programs,
and how this influences result quality or the handling of larger problem
instances on given set of qubits. We illustrate various approximation
techniques on both, simulations and real QA hardware, on different seminal
problems, and interpret the results to contribute towards a better
understanding of the real-world power and limitations of current-state and
future quantum computing.
Related papers
- A Review of Quantum Scientific Computing Algorithms for Engineering Problems [0.0]
Quantum computing, leveraging quantum phenomena like superposition and entanglement, is emerging as a transformative force in computing technology.
This paper systematically explores the foundational concepts of quantum mechanics and their implications for computational advancements.
arXiv Detail & Related papers (2024-08-25T21:40:22Z) - Quantum Approximate Optimization: A Computational Intelligence Perspective [1.756184965281354]
We introduce quantum computing and variational quantum algorithms (VQAs)
We explain Farhi et al.'s quantum approximate optimization algorithm (Farhi's QAOA)
We discuss connections of QAOA to relevant domains, such as computational learning theory and genetic algorithms.
arXiv Detail & Related papers (2024-07-09T19:40:23Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Influence of HW-SW-Co-Design on Quantum Computing Scalability [6.2543855067453675]
We investigate how key figures - circuit depth and gate count - required to solve four NP-complete problems vary with tailored hardware properties.
Our results reveal that achieving near-optimal performance and properties does not necessarily require optimal quantum hardware.
arXiv Detail & Related papers (2023-06-07T08:36:33Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Using a quantum computer to solve a real-world problem -- what can be
achieved today? [0.0]
Quantum computing is an important developing technology with the potential to revolutionise the landscape of scientific and business problems.
The widespread excitement derives from the potential for a fault tolerant quantum computer to solve previously intractable problems.
We are currently in the so-called NISQ era where more quantum approaches are being applied to early versions of quantum hardware.
arXiv Detail & Related papers (2022-11-23T16:10:53Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Optimizing the Optimizer: Decomposition Techniques for Quantum Annealing [0.0]
Current generation quantum computers are too small to solve real-world problems.
In this work, we explore multiple heterogeneous approaches to solving benchmark problems.
Our results indicate that solver performance is highly dependent on the structure of the problem graph.
arXiv Detail & Related papers (2020-01-16T21:35:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.