Towards Efficient Large Language Models for Scientific Text: A Review
- URL: http://arxiv.org/abs/2408.10729v1
- Date: Tue, 20 Aug 2024 10:57:34 GMT
- Title: Towards Efficient Large Language Models for Scientific Text: A Review
- Authors: Huy Quoc To, Ming Liu, Guangyan Huang,
- Abstract summary: Large language models (LLMs) have ushered in a new era for processing complex information in various fields, including science.
Due to the power of LLMs, they require extremely expensive computational resources, intense amounts of data, and training time.
In recent years, researchers have proposed various methodologies to make scientific LLMs more affordable.
- Score: 4.376712802685017
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models (LLMs) have ushered in a new era for processing complex information in various fields, including science. The increasing amount of scientific literature allows these models to acquire and understand scientific knowledge effectively, thus improving their performance in a wide range of tasks. Due to the power of LLMs, they require extremely expensive computational resources, intense amounts of data, and training time. Therefore, in recent years, researchers have proposed various methodologies to make scientific LLMs more affordable. The most well-known approaches align in two directions. It can be either focusing on the size of the models or enhancing the quality of data. To date, a comprehensive review of these two families of methods has not yet been undertaken. In this paper, we (I) summarize the current advances in the emerging abilities of LLMs into more accessible AI solutions for science, and (II) investigate the challenges and opportunities of developing affordable solutions for scientific domains using LLMs.
Related papers
- Federated Large Language Models: Current Progress and Future Directions [63.68614548512534]
This paper surveys Federated learning for LLMs (FedLLM), highlighting recent advances and future directions.
We focus on two key aspects: fine-tuning and prompt learning in a federated setting, discussing existing work and associated research challenges.
arXiv Detail & Related papers (2024-09-24T04:14:33Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
Large language models (LLMs) have revolutionized the way text and other modalities of data are handled.
We aim to provide a more holistic view of the research landscape by unveiling cross-field and cross-modal connections between scientific LLMs.
arXiv Detail & Related papers (2024-06-16T08:03:24Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
Large Language Models (LLMs) have emerged as a transformative power in enhancing natural language comprehension.
The application of LLMs extends beyond conventional linguistic boundaries, encompassing specialized linguistic systems developed within various scientific disciplines.
As a burgeoning area in the community of AI for Science, scientific LLMs warrant comprehensive exploration.
arXiv Detail & Related papers (2024-01-26T05:33:34Z) - From Prompt Engineering to Prompt Science With Human in the Loop [12.230632679443364]
This article presents a new methodology inspired by codebook construction through qualitative methods to address that.
We show how a set of researchers can work through a rigorous process of labeling, deliberating, and documenting to remove subjectivity and bring transparency and replicability to prompt generation process.
arXiv Detail & Related papers (2024-01-01T01:37:36Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
The rapid growth of Large Language Models (LLMs) has been a driving force in transforming various domains.
This paper examines the multi-faceted dimensions of efficiency essential for the end-to-end algorithmic development of LLMs.
arXiv Detail & Related papers (2023-12-01T16:00:25Z) - An Interdisciplinary Outlook on Large Language Models for Scientific
Research [3.4108358650013573]
We describe the capabilities and constraints of Large Language Models (LLMs) within disparate academic disciplines, aiming to delineate their strengths and limitations with precision.
We examine how LLMs augment scientific inquiry, offering concrete examples such as accelerating literature review by summarizing vast numbers of publications.
We articulate the challenges LLMs face, including their reliance on extensive and sometimes biased datasets, and the potential ethical dilemmas stemming from their use.
arXiv Detail & Related papers (2023-11-03T19:41:09Z) - SciBench: Evaluating College-Level Scientific Problem-Solving Abilities of Large Language Models [70.5763210869525]
We introduce an expansive benchmark suite SciBench for Large Language Model (LLM)
SciBench contains a dataset featuring a range of collegiate-level scientific problems from mathematics, chemistry, and physics domains.
The results reveal that the current LLMs fall short of delivering satisfactory performance, with the best overall score of merely 43.22%.
arXiv Detail & Related papers (2023-07-20T07:01:57Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
Large Language Models (LLMs) have recently demonstrated remarkable capabilities in natural language processing tasks.
This article provides an overview of the existing literature on a broad range of LLM-related concepts.
arXiv Detail & Related papers (2023-07-12T20:01:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.