Quantum Measurement for Quantum Chemistry on a Quantum Computer
- URL: http://arxiv.org/abs/2501.14968v1
- Date: Fri, 24 Jan 2025 23:06:32 GMT
- Title: Quantum Measurement for Quantum Chemistry on a Quantum Computer
- Authors: Smik Patel, Praveen Jayakumar, Tzu-Ching Yen, Artur F. Izmaylov,
- Abstract summary: A critical component of any quantum algorithm is the measurement step, where the desired properties are extracted from a quantum computer.
This review focuses on recent advancements in quantum measurement techniques tailored for quantum chemistry.
- Score: 0.0
- License:
- Abstract: Quantum chemistry is among the most promising applications of quantum computing, offering the potential to solve complex electronic structure problems more efficiently than classical approaches. A critical component of any quantum algorithm is the measurement step, where the desired properties are extracted from a quantum computer. This review focuses on recent advancements in quantum measurement techniques tailored for quantum chemistry, particularly within the second quantized framework suitable for current and near-term quantum hardware. We provide a comprehensive overview of measurement strategies developed primarily for the Variational Quantum Eigensolver (VQE) and its derivatives. These strategies address the inherent challenges posed by complexity of the electronic Hamiltonian operator. Additionally, we examine methods for estimating excited states and one- and two-electron properties, extending the applicability of quantum algorithms to broader chemical phenomena. Key aspects of the review include approaches for constructing measurement operators with reduced classical preprocessing and quantum implementation costs, techniques to minimize the number of measurements required for a given accuracy, and error mitigation strategies that leverage symmetries and other properties of the measurement operators. Furthermore, we explore measurement schemes rooted in Quantum Phase Estimation (QPE), which are expected to become viable with the advent of fault-tolerant quantum computing. This review emphasizes foundational concepts and methodologies rather than numerical benchmarks, serving as a resource for researchers aiming to enhance the efficiency and accuracy of quantum measurements in quantum chemistry.
Related papers
- Classical post-processing approach for quantum amplitude estimation [0.0]
We propose an approach for quantum amplitude estimation (QAE) designed to enhance computational efficiency while minimizing the reliance on quantum resources.
Our method leverages quantum computers to generate a sequence of signals, from which the quantum amplitude is inferred through classical post-processing techniques.
arXiv Detail & Related papers (2025-02-08T15:51:31Z) - Solving an Industrially Relevant Quantum Chemistry Problem on Quantum Hardware [31.15746974078601]
We calculate the lowest energy eigenvalue of active space Hamiltonians of industrially relevant and strongly correlated metal chelates on trapped ion quantum hardware.
We are able to achieve chemical accuracy by training a variational quantum algorithm on quantum hardware, followed by a classical diagonalization in the subspace of states measured as outputs of the quantum circuit.
arXiv Detail & Related papers (2024-08-20T12:50:15Z) - Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers [0.0]
We present a study of quantum linear response theory obtaining spectroscopic properties on simulated fault-tolerant quantum computers.
This work introduces novel metrics to analyze and predict the origins of noise in the quantum algorithm.
We highlight the significant impact of Pauli saving in reducing measurement costs and noise.
arXiv Detail & Related papers (2024-08-17T23:46:17Z) - Quantum Algorithms and Applications for Open Quantum Systems [1.7717834336854132]
We provide a succinct summary of the fundamental theory of open quantum systems.
We then delve into a discussion on recent quantum algorithms.
We conclude with a discussion of pertinent applications, demonstrating the applicability of this field to realistic chemical, biological, and material systems.
arXiv Detail & Related papers (2024-06-07T19:02:22Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Anticipative measurements in hybrid quantum-classical computation [68.8204255655161]
We present an approach where the quantum computation is supplemented by a classical result.
Taking advantage of its anticipation also leads to a new type of quantum measurements, which we call anticipative.
In an anticipative quantum measurement the combination of the results from classical and quantum computations happens only in the end.
arXiv Detail & Related papers (2022-09-12T15:47:44Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.