論文の概要: Inverse Deep Learning Ray Tracing for Heliostat Surface Prediction
- arxiv url: http://arxiv.org/abs/2408.10802v1
- Date: Tue, 20 Aug 2024 12:51:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 13:45:16.783660
- Title: Inverse Deep Learning Ray Tracing for Heliostat Surface Prediction
- Title(参考訳): ヘリオスタット表面予測のための逆ディープラーニングレイトレーシング
- Authors: Jan Lewen, Max Pargmann, Mehdi Cherti, Jenia Jitsev, Robert Pitz-Paal, Daniel Maldonado Quinto,
- Abstract要約: 我々は、ヘリオスタット校正時に得られたターゲット画像のみに基づいてヘリオスタット表面を予測するために、逆ディープラーニングレイトレーシング(iDLR)を導入する。
シミュレーションに基づく研究により, ヘリオスタット表面のフラックス密度分布にはヘリオスタット表面に関する十分な情報が保持されていることが示された。
以上の結果から,iDLRはCSPプラントの操業を増強し,発電所全体の効率とエネルギー消費を増大させる可能性が示唆された。
- 参考スコア(独自算出の注目度): 3.9888918233632746
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concentrating Solar Power (CSP) plants play a crucial role in the global transition towards sustainable energy. A key factor in ensuring the safe and efficient operation of CSP plants is the distribution of concentrated flux density on the receiver. However, the non-ideal flux density generated by individual heliostats can undermine the safety and efficiency of the power plant. The flux density from each heliostat is influenced by its precise surface profile, which includes factors such as canting and mirror errors. Accurately measuring these surface profiles for a large number of heliostats in operation is a formidable challenge. Consequently, control systems often rely on the assumption of ideal surface conditions, which compromises both safety and operational efficiency. In this study, we introduce inverse Deep Learning Ray Tracing (iDLR), an innovative method designed to predict heliostat surfaces based solely on target images obtained during heliostat calibration. Our simulation-based investigation demonstrates that sufficient information regarding the heliostat surface is retained in the flux density distribution of a single heliostat, enabling deep learning models to accurately predict the underlying surface with deflectometry-like precision for the majority of heliostats. Additionally, we assess the limitations of this method, particularly in relation to surface accuracy and resultant flux density predictions. Furthermore, we are presenting a new comprehensive heliostat model using Non-Uniform Rational B-Spline (NURBS) that has the potential to become the new State of the Art for heliostat surface parameterization. Our findings reveal that iDLR has significant potential to enhance CSP plant operations, potentially increasing the overall efficiency and energy output of the power plants.
- Abstract(参考訳): 太陽光発電(CSP)のプラントは、持続可能なエネルギーへの世界的移行において重要な役割を担っている。
CSPプラントの安全かつ効率的な運転を保証するための重要な要因は、受信機に集束密度を集中させることである。
しかし、個々のヘリオスタットによって生じる非理想的なフラックス密度は、発電所の安全性と効率を損なう可能性がある。
各ヘリオスタットからのフラックス密度は、キャンティングやミラーエラーなどの要因を含む表面の正確なプロファイルの影響を受けている。
手術中の多数のヘリオスタットに対して,これらの表面形状を正確に測定することは,非常に難しい課題である。
その結果、制御システムはしばしば理想的な表面条件の仮定に依存し、安全と運転効率の両方を損なう。
本研究では,ヘリオスタットキャリブレーション時に得られたターゲット画像のみに基づいて,ヘリオスタット表面の予測を行う革新的な手法である逆ディープラーニングレイトレーシング(iDLR)を提案する。
シミュレーションに基づく研究では, ヘリオスタットのフラックス密度分布にヘリオスタット表面に関する十分な情報が保持されていることを示し, 深層学習モデルにより, 大部分のヘリオスタットに対して, 偏向法のような精度で基礎表面を正確に予測できることを示した。
さらに,この手法の限界,特に表面の精度やフラックス密度の予測について評価する。
さらに,非均一なRational B-Spline (NURBS) を用いたヘリオスタットの新しい包括的ヘリオスタットモデルを提案する。
以上の結果から,iDLRはCSPプラントの操業を増強し,発電所全体の効率とエネルギー消費を増大させる可能性が示唆された。
関連論文リスト
- Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - An Atmospheric Correction Integrated LULC Segmentation Model for High-Resolution Satellite Imagery [0.0]
本研究では、大気の反射率と透過率を推定するために、ルックアップテーブルに基づく放射移動シミュレーションを用いる。
その後、修正された表面反射データは、教師付きおよび半教師付きセグメンテーションモデルで使用された。
論文 参考訳(メタデータ) (2024-09-09T10:47:39Z) - Machine Learning for Methane Detection and Quantification from Space -- A survey [49.7996292123687]
メタン (CH_4) は強力な温室効果ガスであり、20年間で二酸化炭素 (CO_2) の86倍の温暖化に寄与する。
この研究は、ショートウェーブ赤外線(SWIR)帯域におけるメタン点源検出センサの既存の情報を拡張する。
従来の機械学習(ML)アプローチと同様に、最先端の技術をレビューする。
論文 参考訳(メタデータ) (2024-08-27T15:03:20Z) - Solar synthetic imaging: Introducing denoising diffusion probabilistic models on SDO/AIA data [0.0]
本研究では、生成的深層学習モデル、特にDenoising Diffusion Probabilistic Model (DDPM)を用いて、太陽現象の合成画像を作成することを提案する。
SDO宇宙船に搭載されたAIA機器のデータセットを利用することで、データ不足問題に対処することを目指している。
DDPMのパフォーマンスは、クラスタメトリクス、Frechet Inception Distance (FID)、F1スコアを用いて評価され、現実的な太陽画像を生成する上で有望な結果を示している。
論文 参考訳(メタデータ) (2024-04-03T08:18:45Z) - Forecasting SEP Events During Solar Cycles 23 and 24 Using Interpretable
Machine Learning [38.321248253111776]
我々は、新しいデータプロダクトの予測可能性を評価するために、一連の機械学習戦略を用いて、事後SEPイベントの予測を行う。
データ量の増大にもかかわらず、予測精度は 0.7 + 0.1 に達し、これはこれらのベンチマークに合致するが、公表されたベンチマークを超えない。
論文 参考訳(メタデータ) (2024-03-04T23:12:17Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - High-Cadence Thermospheric Density Estimation enabled by Machine
Learning on Solar Imagery [0.14061979259370275]
我々は、NASAのソーラー・ダイナミクス・オブザーバ(SDO)極紫外線(EUV)スペクトル画像をニューラル熱圏密度モデルに組み込む。
我々は、EUV画像により、時間分解能をはるかに高め、地上ベースのプロキシを置き換えることができることを示した。
論文 参考訳(メタデータ) (2023-11-12T23:39:21Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
太陽発電は二酸化炭素の排出量を大幅に削減することで気候変動を緩和する大きな可能性を秘めている。
しかし、太陽光の固有の変動は、電力網に太陽エネルギーをシームレスに統合する上で大きな課題となる。
本稿では,衛星データを用いた時間的文脈の活用を目的としたディープラーニングアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
機械学習技術の強みを利用した日次太陽エネルギー予測について報告する。
線形, 尾根, ラッソ, 決定木, ランダム森林, 人工ニューラルネットワークなどのベースライン回帰器の予測モデルを実装した。
改良された精度は,2つのグリッドサイズでランダム森林と尾根回帰器によって達成されている。
論文 参考訳(メタデータ) (2020-10-25T17:56:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。