論文の概要: An Atmospheric Correction Integrated LULC Segmentation Model for High-Resolution Satellite Imagery
- arxiv url: http://arxiv.org/abs/2409.05494v2
- Date: Tue, 10 Sep 2024 06:15:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-11 12:03:11.208190
- Title: An Atmospheric Correction Integrated LULC Segmentation Model for High-Resolution Satellite Imagery
- Title(参考訳): 高解像度衛星画像のための大気補正統合LULCセグメンテーションモデル
- Authors: Soham Mukherjee, Yash Dixit, Naman Srivastava, Joel D Joy, Rohan Olikara, Koesha Sinha, Swarup E, Rakshit Ramesh,
- Abstract要約: 本研究では、大気の反射率と透過率を推定するために、ルックアップテーブルに基づく放射移動シミュレーションを用いる。
その後、修正された表面反射データは、教師付きおよび半教師付きセグメンテーションモデルで使用された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of fine-scale multispectral imagery with deep learning models has revolutionized land use and land cover (LULC) classification. However, the atmospheric effects present in Top-of-Atmosphere sensor measured Digital Number values must be corrected to retrieve accurate Bottom-of-Atmosphere surface reflectance for reliable analysis. This study employs look-up-table-based radiative transfer simulations to estimate the atmospheric path reflectance and transmittance for atmospherically correcting high-resolution CARTOSAT-3 Multispectral (MX) imagery for several Indian cities. The corrected surface reflectance data were subsequently used in supervised and semi-supervised segmentation models, demonstrating stability in multi-class (buildings, roads, trees and water bodies) LULC segmentation accuracy, particularly in scenarios with sparsely labelled data.
- Abstract(参考訳): 大規模マルチスペクトル画像とディープラーニングモデルの統合は、土地利用と土地被覆(LULC)の分類に革命をもたらした。
しかし, 大気表面反射率の精度を向上するためには, 測定値のディジタル数値を補正する必要がある。
本研究では、高分解能CARTOSAT-3マルチスペクトル(MX)画像の大気中反射率と透過率を推定するために、ルックアップテーブルに基づく放射光伝達シミュレーションを用いる。
修正表面反射率データはその後、教師付きおよび半教師付きセグメンテーションモデルで使用され、特に疎ラベルデータを用いた場合、多クラス(建物、道路、木、水域)のLULCセグメンテーション精度の安定性を実証した。
関連論文リスト
- Effect of Fog Particle Size Distribution on 3D Object Detection Under Adverse Weather Conditions [3.9908045942106165]
大気中の霧の存在は、システム全体の性能を著しく低下させる。
悪天候下における3次元物体検出における霧粒径分布の役割を解析した。
論文 参考訳(メタデータ) (2024-08-02T08:06:12Z) - Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
地表面プロセスのシミュレーションによる実験研究の高速化における3つの代理モデルの効率性を評価する。
以上の結果から, LSTMネットワークは, 予測期間を経た平均モデル全体の精度は高いが, 慎重に調整した場合は, 大陸の長距離予測に優れることがわかった。
論文 参考訳(メタデータ) (2024-07-23T13:26:05Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
気象学的ダウンスケーリングを任意の散乱ステーションスケールに拡張し、新しいベンチマークとデータセットを確立する。
データ同化技術にインスパイアされた我々は、観測データをダウンスケーリングプロセスに統合し、マルチスケールの観測先行情報を提供する。
提案手法は、複数の曲面変数上で、他の特別に設計されたベースラインモデルよりも優れている。
論文 参考訳(メタデータ) (2024-01-22T14:02:56Z) - Learning Surface Scattering Parameters From SAR Images Using
Differentiable Ray Tracing [8.19502673278742]
本稿では,スペキュラとディフューズの両方を包括的に考慮した表面マイクロ波レンダリングモデルを提案する。
CSVBSDF表面散乱パラメータ学習のためのSAR画像に基づく微分可能レイトレーシング(DRT)エンジンを構築した。
提案手法の有効性はシミュレーションと実SAR画像との比較により検証されている。
論文 参考訳(メタデータ) (2024-01-02T12:09:06Z) - High-Cadence Thermospheric Density Estimation enabled by Machine
Learning on Solar Imagery [0.14061979259370275]
我々は、NASAのソーラー・ダイナミクス・オブザーバ(SDO)極紫外線(EUV)スペクトル画像をニューラル熱圏密度モデルに組み込む。
我々は、EUV画像により、時間分解能をはるかに高め、地上ベースのプロキシを置き換えることができることを示した。
論文 参考訳(メタデータ) (2023-11-12T23:39:21Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - High-Quality RGB-D Reconstruction via Multi-View Uncalibrated
Photometric Stereo and Gradient-SDF [48.29050063823478]
本稿では、カメラのポーズ、照明、アルベド、表面の正規化に取り組み、新しい多視点RGB-Dベースの再構成手法を提案する。
提案手法は,特定の物理モデルを用いて画像描画過程を定式化し,実際の表面の体積量を最適化する。
論文 参考訳(メタデータ) (2022-10-21T19:09:08Z) - Learning to Simulate Realistic LiDARs [66.7519667383175]
リアルLiDARセンサのデータ駆動シミュレーションのためのパイプラインを提案する。
本モデルでは, 透明表面上の落下点などの現実的な効果を符号化できることが示される。
我々は2つの異なるLiDARセンサのモデルを学習し、それに従ってシミュレーションされたLiDARデータを改善する。
論文 参考訳(メタデータ) (2022-09-22T13:12:54Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Predicting Landsat Reflectance with Deep Generative Fusion [2.867517731896504]
公共の衛星ミッションは一般に、空間分解能と時間分解能のトレードオフに結びついている。
これにより、植生の監視や人道的行動を支援する能力が損なわれる。
空間的・時間的特性の異なる製品を融合させて高解像度の光学画像を生成するための深部生成モデルの可能性を探る。
論文 参考訳(メタデータ) (2020-11-09T21:06:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。