論文の概要: Constructing a High Temporal Resolution Global Lakes Dataset via Swin-Unet with Applications to Area Prediction
- arxiv url: http://arxiv.org/abs/2408.10821v1
- Date: Tue, 20 Aug 2024 13:17:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 13:35:12.723513
- Title: Constructing a High Temporal Resolution Global Lakes Dataset via Swin-Unet with Applications to Area Prediction
- Title(参考訳): Swin-Unetによる高時間分解能グローバルレイクデータセットの構築と地域予測への応用
- Authors: Yutian Han, Baoxiang Huang, He Gao,
- Abstract要約: 湖は、水の供給、生物多様性の生息地、炭素の隔離など、様々な貴重な生態系を提供している。
最近開発されたGlobal Lakes Area Database (GLAKES)は、世界中で340万以上の湖を地図化している。
本稿では,1990年から2021年までの全世界で152,567の湖沼に対して,二年紀のデライン化と面積測定が可能な拡張型湖沼データベースGLAKES-Additionalを紹介した。
- 参考スコア(独自算出の注目度): 1.7614751781649955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lakes provide a wide range of valuable ecosystem services, such as water supply, biodiversity habitats, and carbon sequestration. However, lakes are increasingly threatened by climate change and human activities. Therefore, continuous global monitoring of lake dynamics is crucial, but remains challenging on a large scale. The recently developed Global Lakes Area Database (GLAKES) has mapped over 3.4 million lakes worldwide, but it only provides data at decadal intervals, which may be insufficient to capture rapid or short-term changes.This paper introduces an expanded lake database, GLAKES-Additional, which offers biennial delineations and area measurements for 152,567 lakes globally from 1990 to 2021. We employed the Swin-Unet model, replacing traditional convolution operations, to effectively address the challenges posed by the receptive field requirements of high spatial resolution satellite imagery. The increased biennial time resolution helps to quantitatively attribute lake area changes to climatic and hydrological drivers, such as precipitation and temperature changes.For predicting lake area changes, we used a Long Short-Term Memory (LSTM) neural network and an extended time series dataset for preliminary modeling. Under climate and land use scenarios, our model achieved an RMSE of 0.317 km^2 in predicting future lake area changes.
- Abstract(参考訳): 湖は、水の供給、生物多様性の生息地、炭素の隔離など、様々な貴重な生態系を提供している。
しかし、湖は気候変動や人的活動によってますます脅かされている。
したがって、湖沼のダイナミクスの継続的なグローバルモニタリングは重要であるが、大規模に挑戦することは依然として困難である。
最近開発されたGlobal Lakes Area Database(GLAKES)は、世界中で340万以上の湖をマッピングしているが、急激な変化や短期的な変化をとらえるには不十分な非周期的なデータしか提供していない。
我々はSwin-Unetモデルを用いて従来の畳み込み処理を置き換え、高空間分解能衛星画像の受容場要求による課題を効果的に解決した。
二年周期の時間分解能の増大は、降水や温度変化などの気候・水文要因による湖沼領域の変化を定量的に評価するのに役立ち、湖沼領域の変化を予測するために、Long Short-Term Memory(LSTM)ニューラルネットワークと予備モデルのための拡張時系列データセットを使用した。
気候・土地利用のシナリオでは,将来の湖沼地域の変化を予測するため,本モデルは0.317km^2のRMSEを達成した。
関連論文リスト
- Resolution-Agnostic Transformer-based Climate Downscaling [0.0]
本研究では,地球ビジョントランス(Earth ViT)モデルを用いたコスト効率の低下手法を提案する。
追加のトレーニングなしではうまく機能し、さまざまな解像度で一般化する能力を示している。
最終的に、この手法は、主要な気候変数の潜在的な将来の変化をより包括的に見積もることができる。
論文 参考訳(メタデータ) (2024-11-22T07:32:11Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
気象予測において重要な課題であるダウンスケーリングは、ターゲット領域に対する高解像度気象状態の再構築を可能にする。
以前のダウンスケーリング手法には気象学のための調整された設計が欠けており、構造的な限界に遭遇した。
本稿では,多変数相関と地形情報の利用性を高める新しいモデルであるMambaDSを提案する。
論文 参考訳(メタデータ) (2024-08-20T13:45:49Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
本稿では,市民科学データベース eBird の観測データから得られたラベルを用いた,米国内の位置情報のサテライトデータセットである SatBird について述べる。
ケニアでは低データのレシエーションを表すデータセットも提供しています。
リモートセンシングタスクのためのSOTAモデルを含む、データセットのベースラインセットをベンチマークします。
論文 参考訳(メタデータ) (2023-11-02T02:00:27Z) - An evaluation of deep learning models for predicting water depth
evolution in urban floods [59.31940764426359]
高空間分解能水深予測のための異なる深層学習モデルの比較を行った。
深層学習モデルはCADDIESセル-オートマタフラッドモデルによってシミュレーションされたデータを再現するために訓練される。
その結果,ディープラーニングモデルでは,他の手法に比べて誤差が低いことがわかった。
論文 参考訳(メタデータ) (2023-02-20T16:08:54Z) - Multi-scale Digital Twin: Developing a fast and physics-informed
surrogate model for groundwater contamination with uncertain climate models [53.44486283038738]
気候変動は地下水汚染の長期的な土壌管理問題を悪化させる。
U-Net強化フーリエニューラル汚染(PDENO)を用いた物理インフォームド機械学習サロゲートモデルを開発した。
並行して、気候データと組み合わされた畳み込みオートエンコーダを開発し、アメリカ合衆国全体の気候領域の類似性の次元を減少させる。
論文 参考訳(メタデータ) (2022-11-20T06:46:35Z) - GlacierNet2: A Hybrid Multi-Model Learning Architecture for Alpine
Glacier Mapping [5.953569982292301]
氷河の幾何学に関するテーマ的かつ定量的な情報は、気候変動に対する氷河の強制と感受性を理解するのに不可欠である。
デブリ被覆氷河(DCG)の正確なマッピングは、スペクトル情報と従来の機械学習技術によって難しいことが知られている。
本研究の目的は、畳み込みニューラルネットワークセグメンテーションモデルを利用して、地域のDCGアブレーションゾーンを正確に概説する、先進的なディープラーニングベースのアプローチであるGlacierNetを改善することである。
論文 参考訳(メタデータ) (2022-04-06T14:39:34Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
本稿では、LC分類と解析を行うために、新しい軽量(89kパラメータのみ)畳み込みニューラルネットワーク(ConvNet)を提案する。
本研究では,実世界のオープンデータソースを3つ組み合わせて13のチャネルを得る。
組込み分析は、いくつかのクラスにおいて限られたパフォーマンスを期待し、最も類似したクラスをグループ化する機会を与えてくれます。
論文 参考訳(メタデータ) (2022-01-26T14:58:51Z) - Probabilistic modeling of lake surface water temperature using a
Bayesian spatio-temporal graph convolutional neural network [55.41644538483948]
本研究では,湖沼の温度をある程度の深さでシミュレーションし,気象学的特徴と合わせて評価することを提案する。
本研究は,提案モデルが湖沼表面全体に均質に優れた性能をもたらすことを示す。
結果は、最先端のベイズ深層学習法と比較される。
論文 参考訳(メタデータ) (2021-09-27T09:19:53Z) - Recent Ice Trends in Swiss Mountain Lakes: 20-year Analysis of MODIS
Imagery [19.72060218456938]
湖氷の枯渇は、海面上昇や氷河後退のように、気候変動の指標として役立ちます。
いくつかのLIP(Lake Ice Phenological)イベントは、地域や地球の気候変動を理解するためのセンチネルとして機能します。
スイスのオーバーレンガディン地域では, 凍結, 分裂, 時間的凍結といったLIP現象の観測に重点を置いている。
論文 参考訳(メタデータ) (2021-03-23T10:25:02Z) - Augmented Convolutional LSTMs for Generation of High-Resolution Climate
Change Projections [1.7503398807380832]
統計的ダウンスケーリングのための補助的情報時空間ニューラルアーキテクチャを提案する。
現在の研究では、世界で最も気候的に多様化したインドにおいて、ESMの出力から1.15度 (115 km) から0.25度 (25 km) まで、毎日降水量のダウンスケーリングを行っている。
論文 参考訳(メタデータ) (2020-09-23T17:52:09Z) - Lake Ice Detection from Sentinel-1 SAR with Deep Learning [15.493845481313924]
本稿では,深層ニューラルネットワークを用いたSentinel-1 Synthetic Aperture Radar(SAR)データの自動解析に基づく湖氷モニタリングシステムを提案する。
氷検出を2クラス(凍結・非凍結)の意味問題とし,最先端の深部畳み込みネットワーク(CNN)を用いて解いた。
2016年-17年-2017年-18年と3回の冬のスイスのアルペン湖について報告した。
論文 参考訳(メタデータ) (2020-02-17T16:31:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。