Trustworthy Compression? Impact of AI-based Codecs on Biometrics for Law Enforcement
- URL: http://arxiv.org/abs/2408.10823v1
- Date: Tue, 20 Aug 2024 13:18:28 GMT
- Title: Trustworthy Compression? Impact of AI-based Codecs on Biometrics for Law Enforcement
- Authors: Sandra Bergmann, Denise Moussa, Christian Riess,
- Abstract summary: We investigate how AI compression impacts iris, fingerprint and soft-biometric images.
It turns out that iris recognition can be strongly affected, while fingerprint recognition is quite robust.
Loss of detail is qualitatively best seen in fabrics and tattoos images.
- Score: 6.014777261874645
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based biometrics can aid law enforcement in various aspects, for example in iris, fingerprint and soft-biometric recognition. A critical precondition for recognition is the availability of sufficient biometric information in images. It is visually apparent that strong JPEG compression removes such details. However, latest AI-based image compression seemingly preserves many image details even for very strong compression factors. Yet, these perceived details are not necessarily grounded in measurements, which raises the question whether these images can still be used for biometric recognition. In this work, we investigate how AI compression impacts iris, fingerprint and soft-biometric (fabrics and tattoo) images. We also investigate the recognition performance for iris and fingerprint images after AI compression. It turns out that iris recognition can be strongly affected, while fingerprint recognition is quite robust. The loss of detail is qualitatively best seen in fabrics and tattoos images. Overall, our results show that AI-compression still permits many biometric tasks, but attention to strong compression factors in sensitive tasks is advisable.
Related papers
- Effectiveness of learning-based image codecs on fingerprint storage [19.292976022250684]
This study represents the first investigation about the adaptability of learning-based image codecs in the storage of fingerprint images.
At a fixed rate point, learned solutions considerably outperform previous fingerprint coding standards, like JPEG2000.
Results prove that the peculiarities of learned compression artifacts do not prevent automatic fingerprint identification.
arXiv Detail & Related papers (2024-09-27T13:23:17Z) - Hand Biometrics in Digital Forensics [23.139293889265335]
Many biometric characteristics are playing their significant roles in forensics over the decades.
Due to the crisis of pure uniqueness of hand features for a very large database, it may be relevant for verification only.
arXiv Detail & Related papers (2024-02-17T06:10:00Z) - Training Data Improvement for Image Forgery Detection using Comprint [15.650121802816878]
Comprint enables forgery detection by utilizing JPEG-compression fingerprints.
This paper evaluates the impact of the training set on Comprint's performance.
arXiv Detail & Related papers (2022-11-25T12:57:51Z) - Hierarchical Perceptual Noise Injection for Social Media Fingerprint
Privacy Protection [106.5308793283895]
fingerprint leakage from social media raises a strong desire for anonymizing shared images.
To guard the fingerprint leakage, adversarial attack emerges as a solution by adding imperceptible perturbations on images.
We propose FingerSafe, a hierarchical perceptual protective noise injection framework to address the mentioned problems.
arXiv Detail & Related papers (2022-08-23T02:20:46Z) - A review of schemes for fingerprint image quality computation [66.32254395574994]
This paper reviews existing approaches for fingerprint image quality computation.
We also implement, test and compare a selection of them using the MCYT database including 9000 fingerprint images.
arXiv Detail & Related papers (2022-07-12T10:34:03Z) - Super-Resolution for Selfie Biometrics: Introduction and Application to
Face and Iris [67.74999528342273]
Lack of resolution has a negative impact on the performance of image-based biometrics.
Super-resolution techniques have to be adapted for the particularities of images from a specific biometric modality.
This chapter presents an overview of recent advances in super-resolution reconstruction of face and iris images.
arXiv Detail & Related papers (2022-04-12T10:28:31Z) - A Comparative Study of Fingerprint Image-Quality Estimation Methods [54.84936551037727]
Poor-quality images result in spurious and missing features, thus degrading the performance of the overall system.
In this work, we review existing approaches for fingerprint image-quality estimation.
We have also tested a selection of fingerprint image-quality estimation algorithms.
arXiv Detail & Related papers (2021-11-14T19:53:12Z) - Effects of Image Compression on Face Image Manipulation Detection: A
Case Study on Facial Retouching [14.92708078957906]
The effects of image compression on face image manipulation detection are analyzed.
A case study on facial retouching detection under the influence of image compression is presented.
arXiv Detail & Related papers (2021-03-05T13:28:28Z) - Analyzing and Mitigating JPEG Compression Defects in Deep Learning [69.04777875711646]
We present a unified study of the effects of JPEG compression on a range of common tasks and datasets.
We show that there is a significant penalty on common performance metrics for high compression.
arXiv Detail & Related papers (2020-11-17T20:32:57Z) - Discernible Image Compression [124.08063151879173]
This paper aims to produce compressed images by pursuing both appearance and perceptual consistency.
Based on the encoder-decoder framework, we propose using a pre-trained CNN to extract features of the original and compressed images.
Experiments on benchmarks demonstrate that images compressed by using the proposed method can also be well recognized by subsequent visual recognition and detection models.
arXiv Detail & Related papers (2020-02-17T07:35:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.