論文の概要: Detecting Wildfires on UAVs with Real-time Segmentation Trained by Larger Teacher Models
- arxiv url: http://arxiv.org/abs/2408.10843v2
- Date: Thu, 12 Sep 2024 07:39:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 21:10:23.548497
- Title: Detecting Wildfires on UAVs with Real-time Segmentation Trained by Larger Teacher Models
- Title(参考訳): 大規模教師モデルによるリアルタイムセグメンテーションによるUAVの山火事検出
- Authors: Julius Pesonen, Teemu Hakala, Väinö Karjalainen, Niko Koivumäki, Lauri Markelin, Anna-Maria Raita-Hakola, Juha Suomalainen, Ilkka Pölönen, Eija Honkavaara,
- Abstract要約: 森林火災の早期発見は、大規模な火災が大規模な環境、構造、社会的な被害をもたらすのを防ぐために不可欠である。
無人航空機(UAV)は、最小限のインフラを必要とする迅速な配備で、大規模な遠隔地を効果的にカバーすることができる。
しかし、遠隔地では、高帯域幅のモバイルネットワークが欠如しているため、UAVは検出のためのオンボードコンピューティングに限られている。
本研究では,境界ボックスラベルのみを用いて,小さなセグメンテーションモデルを訓練する方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Early detection of wildfires is essential to prevent large-scale fires resulting in extensive environmental, structural, and societal damage. Uncrewed aerial vehicles (UAVs) can cover large remote areas effectively with quick deployment requiring minimal infrastructure and equipping them with small cameras and computers enables autonomous real-time detection. In remote areas, however, the UAVs are limited to on-board computing for detection due to the lack of high-bandwidth mobile networks. This limits the detection to methods which are light enough for the on-board computer alone. For accurate camera-based localisation, segmentation of the detected smoke is essential but training data for deep learning-based wildfire smoke segmentation is limited. This study shows how small specialised segmentation models can be trained using only bounding box labels, leveraging zero-shot foundation model supervision. The method offers the advantages of needing only fairly easily obtainable bounding box labels and requiring training solely for the smaller student network. The proposed method achieved 63.3% mIoU on a manually annotated and diverse wildfire dataset. The used model can perform in real-time at ~25 fps with a UAV-carried NVIDIA Jetson Orin NX computer while reliably recognising smoke, demonstrated at real-world forest burning events. Code is available at https://gitlab.com/fgi_nls/public/wildfire-real-time-segmentation
- Abstract(参考訳): 森林火災の早期発見は、大規模な火災が大規模な環境、構造、社会的な被害をもたらすのを防ぐために不可欠である。
無人航空機(UAV)は、インフラを最小限にし、小さなカメラとコンピュータを装備することで、自律的なリアルタイム検出を可能にする。
しかし、遠隔地では、高帯域幅のモバイルネットワークが欠如しているため、UAVは検出のためのオンボードコンピューティングに限られている。
これにより、検出はオンボードコンピュータだけで十分軽量な方法に制限される。
検出した煙のセグメンテーションは,カメラによる正確な位置決めには不可欠であるが,深層学習に基づく山火事セグメンテーションのトレーニングデータは限られている。
本研究は、ゼロショット基礎モデル監督を利用して、境界ボックスラベルのみを用いて、小さなセグメンテーションモデルをトレーニングする方法を示す。
この方法は、比較的容易に入手可能なバウンディングボックスラベルしか必要とせず、より小さな学生ネットワークのためにのみトレーニングを必要とするという利点を提供する。
提案手法は手動で注釈付き多様な山火事データセットで63.3% mIoUを達成した。
使用済みモデルは、UAV搭載のNVIDIA Jetson Orin NXコンピュータで25fps程度でリアルタイムに動作し、煙を確実に認識する。
コードはhttps://gitlab.com/fgi_nls/public/wildfire-real-time-segmentationで入手できる。
関連論文リスト
- Hardware Acceleration for Real-Time Wildfire Detection Onboard Drone
Networks [6.313148708539912]
遠隔地や森林地帯での山火事の検出は 破壊と生態系の保全を 最小化するのに不可欠です
ドローンは、高度な撮像技術を備えた、リモートで困難な地形へのアジャイルアクセスを提供する。
限られた計算とバッテリリソースは、画像分類モデルの実装と効率的な実装に困難をもたらす。
本稿では,リアルタイム画像分類と火災分断モデルの構築を目的とする。
論文 参考訳(メタデータ) (2024-01-16T04:16:46Z) - Wildfire Detection Via Transfer Learning: A Survey [2.766371147936368]
本稿では,山頂や森林見張り塔に設置した通常の視界カメラを用いて,山火事の検知に使用されるさまざまなニューラルネットワークモデルについて検討する。
ニューラルネットワークモデルはImageNet-1Kで事前トレーニングされ、カスタムの山火事データセットで微調整される。
論文 参考訳(メタデータ) (2023-06-21T13:57:04Z) - Generalized Few-Shot 3D Object Detection of LiDAR Point Cloud for
Autonomous Driving [91.39625612027386]
我々は,一般的な(ベース)オブジェクトに対して大量のトレーニングデータを持つが,レア(ノーベル)クラスに対してはごく少数のデータしか持たない,一般化された数発の3Dオブジェクト検出という新しいタスクを提案する。
具体的には、画像と点雲の奥行きの違いを分析し、3D LiDARデータセットにおける少数ショット設定の実践的原理を示す。
この課題を解決するために,既存の3次元検出モデルを拡張し,一般的なオブジェクトと稀なオブジェクトの両方を認識するためのインクリメンタルな微調整手法を提案する。
論文 参考訳(メタデータ) (2023-02-08T07:11:36Z) - Multimodal Wildland Fire Smoke Detection [5.15911752972989]
研究によると、気候変動によって温暖な温度と乾燥状態が生まれ、長い山火事の季節と米国の山火事のリスクが増大する。
スモーキーネット(SmokeyNet)は,森林火災の煙を検出するための時間的情報を用いた深層学習モデルである。
SmokeyNetは、ほんの数分の時間で自動早期通知システムとして機能し、破壊的な山火事との戦いに有用なツールを提供する。
論文 参考訳(メタデータ) (2022-12-29T01:16:06Z) - Image-Based Fire Detection in Industrial Environments with YOLOv4 [53.180678723280145]
この研究は、AIが火災を検出し、認識し、画像ストリーム上のオブジェクト検出を使用して検出時間を短縮する可能性を検討する。
そこで我々は, YOLOv4オブジェクト検出器をベースとした複数のモデルのトレーニングと評価に使用されてきた複数の公開情報源から, 適切なデータを収集, ラベル付けした。
論文 参考訳(メタデータ) (2022-12-09T11:32:36Z) - Fully Convolutional One-Stage 3D Object Detection on LiDAR Range Images [96.66271207089096]
FCOS-LiDARは、自律走行シーンのLiDAR点雲のための完全な1段式3Dオブジェクト検出器である。
標準的な2Dコンボリューションを持つRVベースの3D検出器は、最先端のBEVベースの検出器と同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2022-05-27T05:42:16Z) - Analyzing Multispectral Satellite Imagery of South American Wildfires
Using CNNs and Unsupervised Learning [0.0]
本研究では,エクアドルとガラパゴスのランドサット8号の画像をスキップして完全な畳み込みニューラルネットワークを訓練する。
画像セグメンテーションは、K-Means Clusteringを用いてCirrus Cloudバンド上で行われ、連続したピクセル値を3つの離散クラスに単純化する。
さらに2つの畳み込みニューラルネットワークが訓練され、陸地における山火事の存在を分類する。
論文 参考訳(メタデータ) (2022-01-19T02:45:01Z) - FIgLib & SmokeyNet: Dataset and Deep Learning Model for Real-Time
Wildland Fire Smoke Detection [0.0]
Fire Ignition Library (FIgLib) は、25,000点近い山火事の煙画像のデータセットである。
SmokeyNetは、リアルタイムの山火事煙検知にカメラ画像からの時間情報を利用する、新しいディープラーニングアーキテクチャである。
FIgLibデータセットでトレーニングすると、SmokeyNetは同等のベースラインを上回り、人間のパフォーマンスに匹敵する。
論文 参考訳(メタデータ) (2021-12-16T03:49:58Z) - DAAIN: Detection of Anomalous and Adversarial Input using Normalizing
Flows [52.31831255787147]
我々は、アウト・オブ・ディストリビューション(OOD)インプットと敵攻撃(AA)を検出する新しい手法であるDAINを導入する。
本手法は,ニューラルネットワークの内部動作を監視し,活性化分布の密度推定器を学習する。
当社のモデルは,特別なアクセラレータを必要とせずに,効率的な計算とデプロイが可能な単一のGPUでトレーニングすることが可能です。
論文 参考訳(メタデータ) (2021-05-30T22:07:13Z) - Attention-based Reinforcement Learning for Real-Time UAV Semantic
Communication [53.46235596543596]
移動地利用者に対する空対地超信頼性・低遅延通信(URLLC)の問題点について検討する。
グラフアテンション交換ネットワーク(GAXNet)を用いたマルチエージェント深層強化学習フレームワークを提案する。
GAXNetは、最先端のベースラインフレームワークと比較して、0.0000001エラー率で6.5倍のレイテンシを実現している。
論文 参考訳(メタデータ) (2021-05-22T12:43:25Z) - Cooling-Shrinking Attack: Blinding the Tracker with Imperceptible Noises [87.53808756910452]
The method is proposed to deceive-of-the-the-art SiameseRPN-based tracker。
本手法は転送性に優れ,DaSiamRPN,DaSiamRPN-UpdateNet,DiMPなどの他のトップパフォーマンストラッカーを騙すことができる。
論文 参考訳(メタデータ) (2020-03-21T07:13:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。