論文の概要: A Closer Look at Data Augmentation Strategies for Finetuning-Based Low/Few-Shot Object Detection
- arxiv url: http://arxiv.org/abs/2408.10940v1
- Date: Tue, 20 Aug 2024 15:29:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 12:35:03.931781
- Title: A Closer Look at Data Augmentation Strategies for Finetuning-Based Low/Few-Shot Object Detection
- Title(参考訳): ファインタニングに基づく低/低ショット物体検出のためのデータ拡張戦略のより綿密な検討
- Authors: Vladislav Li, Georgios Tsoumplekas, Ilias Siniosoglou, Vasileios Argyriou, Anastasios Lytos, Eleftherios Fountoukidis, Panagiotis Sarigiannidis,
- Abstract要約: 本稿では、カスタムデータ拡張のモデル性能とエネルギー効率の両立と自動データ拡張選択戦略について検討する。
多くの場合、データ拡張戦略の性能向上は、そのエネルギー使用量の増加によって、過度に隠蔽されていることが示されている。
- 参考スコア(独自算出の注目度): 5.434078645728145
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current methods for low- and few-shot object detection have primarily focused on enhancing model performance for detecting objects. One common approach to achieve this is by combining model finetuning with data augmentation strategies. However, little attention has been given to the energy efficiency of these approaches in data-scarce regimes. This paper seeks to conduct a comprehensive empirical study that examines both model performance and energy efficiency of custom data augmentations and automated data augmentation selection strategies when combined with a lightweight object detector. The methods are evaluated in three different benchmark datasets in terms of their performance and energy consumption, and the Efficiency Factor is employed to gain insights into their effectiveness considering both performance and efficiency. Consequently, it is shown that in many cases, the performance gains of data augmentation strategies are overshadowed by their increased energy usage, necessitating the development of more energy efficient data augmentation strategies to address data scarcity.
- Abstract(参考訳): ローショットおよび少数ショットオブジェクト検出のための現在の手法は、主にオブジェクト検出のためのモデル性能の向上に焦点を当てている。
これを実現するための一般的なアプローチは、モデルの微調整とデータ拡張戦略を組み合わせることである。
しかし、データスカース体制におけるこれらのアプローチのエネルギー効率にはほとんど注意が払われていない。
本稿では,軽量物体検出器と組み合わせることで,カスタムデータ拡張のモデル性能とエネルギー効率,および自動データ拡張選択戦略を総合的に検討する。
これらの手法は, 性能とエネルギー消費の3つの異なるベンチマークデータセットで評価され, 効率係数を用いて, 性能と効率の両面から有効性について考察する。
その結果、多くの場合、データ不足に対応するためによりエネルギー効率の良いデータ拡張戦略を開発する必要があるため、データ拡張戦略の性能向上はエネルギー使用量の増加に隠れていることが明らかとなった。
関連論文リスト
- A Simple Background Augmentation Method for Object Detection with Diffusion Model [53.32935683257045]
コンピュータビジョンでは、データの多様性の欠如がモデル性能を損なうことはよく知られている。
本稿では, 生成モデルの進歩を生かして, 単純かつ効果的なデータ拡張手法を提案する。
背景強化は、特にモデルの堅牢性と一般化能力を大幅に改善する。
論文 参考訳(メタデータ) (2024-08-01T07:40:00Z) - Parameter-Efficient Active Learning for Foundational models [7.799711162530711]
基礎的な視覚変換器モデルは、多くの視覚タスクにおいて、驚くほどのショットパフォーマンスを示している。
本研究は,アクティブラーニング(AL)フレームワークにおけるパラメータ効率の良い微調整手法の適用に関する新たな研究である。
論文 参考訳(メタデータ) (2024-06-13T16:30:32Z) - DetDiffusion: Synergizing Generative and Perceptive Models for Enhanced Data Generation and Perception [78.26734070960886]
現在の知覚モデルは、リソース集約的なデータセットに大きく依存している。
セグメンテーションを通じて知覚認識損失(P.A.損失)を導入し、品質と制御性の両方を改善した。
本手法は,世代間における知覚認識属性(P.A. Attr)の抽出と利用により,データ拡張をカスタマイズする。
論文 参考訳(メタデータ) (2024-03-20T04:58:03Z) - Evaluating the Energy Efficiency of Few-Shot Learning for Object
Detection in Industrial Settings [6.611985866622974]
本稿では、下流タスクに標準オブジェクト検出モデルを適用するための微調整手法を提案する。
開発モデルにおけるエネルギー需要のケーススタディと評価について述べる。
最後に、このトレードオフを、カスタマイズされた効率係数測定によって定量化する新しい方法を紹介する。
論文 参考訳(メタデータ) (2024-03-11T11:41:30Z) - Leveraging the Power of Data Augmentation for Transformer-based Tracking [64.46371987827312]
トラッキング用にカスタマイズされた2つのデータ拡張手法を提案する。
まず、動的探索半径機構と境界サンプルのシミュレーションにより、既存のランダムトリミングを最適化する。
第2に,背景干渉などの問題に対するモデルを可能にする,トークンレベルの機能混在強化戦略を提案する。
論文 参考訳(メタデータ) (2023-09-15T09:18:54Z) - Energy Efficient Deep Multi-Label ON/OFF Classification of Low Frequency Metered Home Appliances [0.16777183511743468]
非侵入負荷監視(Non-Inrusive Load Monitoring、NILM)は、単一計測点からアプライアンスレベルのデータを取得するプロセスである。
本稿では,NILMのマルチラベル分類を改良した新しいDLモデルを提案する。
最先端モデルと比較して、提案モデルではエネルギー消費を23%以上削減している。
論文 参考訳(メタデータ) (2023-07-18T13:23:23Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
データ拡張(DA)は、ビジュアル強化学習(RL)アルゴリズムのサンプル効率を高める重要な手法である。
サンプル効率のよい視覚的RLを実現する上で, DAのどの属性が有効かは明らかになっていない。
本研究は,DAの属性が有効性に与える影響を評価するための総合的な実験を行う。
論文 参考訳(メタデータ) (2023-05-25T15:46:20Z) - Smart(Sampling)Augment: Optimal and Efficient Data Augmentation for
Semantic Segmentation [68.8204255655161]
セマンティックイメージセグメンテーションに関する最初の研究を行い、textitSmartAugment と textitSmartSamplingAugment の2つの新しいアプローチを紹介した。
SmartAugmentはベイジアン最適化を使用して、拡張戦略の豊富なスペースを探索し、私たちが考慮しているすべてのセマンティックセグメンテーションタスクにおいて、新しい最先端のパフォーマンスを達成する。
SmartSamplingAugmentは、固定的な拡張戦略を備えたシンプルなパラメータフリーのアプローチで、既存のリソース集約型アプローチとパフォーマンスを競い合い、安価な最先端データ拡張手法を上回っている。
論文 参考訳(メタデータ) (2021-10-31T13:04:45Z) - How Knowledge Graph and Attention Help? A Quantitative Analysis into
Bag-level Relation Extraction [66.09605613944201]
バッグレベルの関係抽出(RE)における注意と知識グラフの効果を定量的に評価する。
その結果,(1)注目精度の向上は,エンティティ参照特徴を抽出するモデルの性能を損なう可能性があること,(2)注目性能は様々なノイズ分布パターンの影響が大きいこと,(3)KG強化された注目はRE性能を向上するが,その効果は注目度を向上させるだけでなく,先行するエンティティを組み込むことによっても改善することがわかった。
論文 参考訳(メタデータ) (2021-07-26T09:38:28Z) - Data fusion strategies for energy efficiency in buildings: Overview,
challenges and novel orientations [2.1874189959020423]
本稿では,過剰消費を低減し,持続可能性を高めるため,既存のデータ融合機構を広範囲に調査する。
我々は,それらの概念化,優位性,課題,欠点について検討するとともに,既存のデータ融合戦略やその他の要因の分類を行う。
1次元の電力信号を2次元空間に変換して画像として扱う2次元局所テクスチャディスクリプタの融合に基づく新しい電気機器識別法を提案する。
論文 参考訳(メタデータ) (2020-09-14T12:04:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。