Wave-Mask/Mix: Exploring Wavelet-Based Augmentations for Time Series Forecasting
- URL: http://arxiv.org/abs/2408.10951v1
- Date: Tue, 20 Aug 2024 15:42:10 GMT
- Title: Wave-Mask/Mix: Exploring Wavelet-Based Augmentations for Time Series Forecasting
- Authors: Dona Arabi, Jafar Bakhshaliyev, Ayse Coskuner, Kiran Madhusudhanan, Kami Serdar Uckardes,
- Abstract summary: This research introduces two augmentation approaches using the discrete wavelet transform (DWT) to adjust frequency elements while preserving temporal dependencies in time series data.
To the best of our knowledge, this is the first study to conduct extensive experiments on multivariate time series using DWT.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Data augmentation is important for improving machine learning model performance when faced with limited real-world data. In time series forecasting (TSF), where accurate predictions are crucial in fields like finance, healthcare, and manufacturing, traditional augmentation methods for classification tasks are insufficient to maintain temporal coherence. This research introduces two augmentation approaches using the discrete wavelet transform (DWT) to adjust frequency elements while preserving temporal dependencies in time series data. Our methods, Wavelet Masking (WaveMask) and Wavelet Mixing (WaveMix), are evaluated against established baselines across various forecasting horizons. To the best of our knowledge, this is the first study to conduct extensive experiments on multivariate time series using Discrete Wavelet Transform as an augmentation technique. Experimental results demonstrate that our techniques achieve competitive results with previous methods. We also explore cold-start forecasting using downsampled training datasets, comparing outcomes to baseline methods.
Related papers
- Leveraging Non-Decimated Wavelet Packet Features and Transformer Models
for Time Series Forecasting [0.0]
We consider the use of Daubechies wavelets with different numbers of vanishing moments as input features to both non-temporal and temporal forecasting methods.
We evaluate the use of these wavelet features on a significantly wider set of forecasting methods than previous studies.
arXiv Detail & Related papers (2024-03-13T15:45:29Z) - FreDF: Learning to Forecast in Frequency Domain [56.24773675942897]
Time series modeling is uniquely challenged by the presence of autocorrelation in both historical and label sequences.
We introduce the Frequency-enhanced Direct Forecast (FreDF) which bypasses the complexity of label autocorrelation by learning to forecast in the frequency domain.
arXiv Detail & Related papers (2024-02-04T08:23:41Z) - Enhancing Algorithm Performance Understanding through tsMorph: Generating Semi-Synthetic Time Series for Robust Forecasting Evaluation [0.393259574660092]
We present tsMorph, a tool for generating semi-synthetic time series through dataset morphing.
In this paper, we show the benefits of tsMorph by assessing the predictive performance of the Long Short-Term Memory Network and DeepAR forecasting algorithms.
arXiv Detail & Related papers (2023-12-03T10:40:07Z) - Efficient Machine Learning Ensemble Methods for Detecting Gravitational
Wave Glitches in LIGO Time Series [0.614609308117547]
We propose two new Machine and Deep learning ensemble approaches for detecting different types of noise and patterns in datasets from GW observatories.
We train and test our models on a dataset consisting of annotated time series from real-world data collected by the Advanced Laser Interferometer GW Observatory.
We empirically show that the best overall accuracy is obtained by the proposed DeepWaves Ensemble, followed close by the ShallowWaves Ensemble.
arXiv Detail & Related papers (2023-11-02T10:07:30Z) - Diverse Data Augmentation with Diffusions for Effective Test-time Prompt
Tuning [73.75282761503581]
We propose DiffTPT, which leverages pre-trained diffusion models to generate diverse and informative new data.
Our experiments on test datasets with distribution shifts and unseen categories demonstrate that DiffTPT improves the zero-shot accuracy by an average of 5.13%.
arXiv Detail & Related papers (2023-08-11T09:36:31Z) - FrAug: Frequency Domain Augmentation for Time Series Forecasting [6.508992154478217]
Data augmentation (DA) has become a de facto solution to expand training data size for deep learning.
This paper proposes simple yet effective frequency domain augmentation techniques that ensure the semantic consistency of augmented data-label pairs in forecasting.
Our results show that FrAug can boost the forecasting accuracy of TSF models in most cases.
arXiv Detail & Related papers (2023-02-18T11:25:42Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
We propose DeepVol, a model based on Dilated Causal Convolutions that uses high-frequency data to forecast day-ahead volatility.
Our empirical results suggest that the proposed deep learning-based approach effectively learns global features from high-frequency data.
arXiv Detail & Related papers (2022-09-23T16:13:47Z) - Probabilistic prediction of the heave motions of a semi-submersible by a
deep learning problem model [4.903969235471705]
We extend a deep learning (DL) model to predict the heave and surge motions of a floating semi-submersible 20 to 50 seconds ahead with good accuracy.
This study extends the understanding of the DL model to predict the wave excited motions of an offshore platform.
arXiv Detail & Related papers (2021-10-09T06:26:42Z) - Real Time Speech Enhancement in the Waveform Domain [99.02180506016721]
We present a causal speech enhancement model working on the raw waveform that runs in real-time on a laptop CPU.
The proposed model is based on an encoder-decoder architecture with skip-connections.
It is capable of removing various kinds of background noise including stationary and non-stationary noises.
arXiv Detail & Related papers (2020-06-23T09:19:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.