Error threshold in active steering protocols for few-qubit systems
- URL: http://arxiv.org/abs/2408.10960v1
- Date: Tue, 20 Aug 2024 15:56:39 GMT
- Title: Error threshold in active steering protocols for few-qubit systems
- Authors: Nico Ackermann, Samuel Morales, Alfredo Levy Yeyati, Sebastian Diehl, Reinhold Egger,
- Abstract summary: We study active steering protocols for weakly measured qubits in the presence of error channels due to amplitude and phase noise.
If the error rate is sufficiently small, the protocol approaches and stabilizes a predesignated pure target state with high fidelity and high purity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study active steering protocols for weakly measured qubits in the presence of error channels due to amplitude and phase noise. If the error rate is sufficiently small, the protocol approaches and stabilizes a predesignated pure target state with high fidelity and high purity, and thus implements autonomous state stabilization. We present numerical simulation results for one and two qubits, taking Andreev qubit circuits as example. As function of the error rate, a sharp threshold separates an error-correcting weak-damping regime from a strong-damping regime where the target state cannot be reached anymore. At the threshold, the purity gap closes.
Related papers
- Error minimization for fidelity estimation of GHZ states with arbitrary noise [0.32634122554913997]
This work studies a scenario in which multiple nodes share noisy Greenberger-Horne-Zeilinger (GHZ) states.
Due to the collapsing nature of quantum measurements, the nodes randomly sample a subset of noisy GHZ states for measurement.
The proposed protocol achieves the minimum mean squared estimation error in a challenging scenario characterized by arbitrary noise.
arXiv Detail & Related papers (2024-08-18T09:02:17Z) - Mitigating Temporal Fragility in the XY Surface Code [3.4746204759424715]
We propose a new logical state preparation protocol based on locally entangling qubits into small Greenberger-Horne-Zeilinger-like states.
We prove that in this new procedure $O(sqrtn)$ high-rate errors along a single lattice boundary can cause a logical failure.
arXiv Detail & Related papers (2023-10-26T18:00:02Z) - Stabilizing two-qubit entanglement with dynamically decoupled active
feedback [0.0]
We analyze a protocol for stabilizing a maximally entangled state of two noninteracting qubits.
We show that robust stabilization with near-unit fidelity can be achieved even in the presence of realistic nonidealities.
arXiv Detail & Related papers (2023-08-07T21:59:36Z) - Low-Depth Flag-Style Syndrome Extraction for Small Quantum
Error-Correction Codes [1.2354542488854734]
Flag-style fault-tolerance has become a linchpin in the realization of small fault-tolerant quantum-error correction experiments.
We show that a dynamic choice of stabilizer measurements leads to flag protocols with lower-depth syndrome-extraction circuits.
This work opens the dialogue on exploiting the properties of the full stabilizer group for reducing circuit overhead in fault-tolerant quantum-error correction.
arXiv Detail & Related papers (2023-05-01T12:08:09Z) - Quantum error correction with dissipatively stabilized squeezed cat
qubits [68.8204255655161]
We propose and analyze the error correction performance of a dissipatively stabilized squeezed cat qubit.
We find that for moderate squeezing the bit-flip error rate gets significantly reduced in comparison with the ordinary cat qubit while leaving the phase flip rate unchanged.
arXiv Detail & Related papers (2022-10-24T16:02:20Z) - Minimization of the estimation error for entanglement distribution
networks with arbitrary noise [1.3198689566654105]
We consider a setup in which nodes randomly sample a subset of the entangled qubit pairs to measure and then estimate the average fidelity of the unsampled pairs conditioned on the measurement outcome.
The proposed estimation protocol achieves the lowest mean squared estimation error in a difficult scenario with arbitrary noise and no prior information.
arXiv Detail & Related papers (2022-03-18T13:05:36Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Entanglement purification by counting and locating errors with
entangling measurements [62.997667081978825]
We consider entanglement purification protocols for multiple copies of qubit states.
We use high-dimensional auxiliary entangled systems to learn about number and positions of errors in the noisy ensemble.
arXiv Detail & Related papers (2020-11-13T19:02:33Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Efficient and robust certification of genuine multipartite entanglement
in noisy quantum error correction circuits [58.720142291102135]
We introduce a conditional witnessing technique to certify genuine multipartite entanglement (GME)
We prove that the detection of entanglement in a linear number of bipartitions by a number of measurements scales linearly, suffices to certify GME.
We apply our method to the noisy readout of stabilizer operators of the distance-three topological color code and its flag-based fault-tolerant version.
arXiv Detail & Related papers (2020-10-06T18:00:07Z) - Log-Likelihood Ratio Minimizing Flows: Towards Robust and Quantifiable
Neural Distribution Alignment [52.02794488304448]
We propose a new distribution alignment method based on a log-likelihood ratio statistic and normalizing flows.
We experimentally verify that minimizing the resulting objective results in domain alignment that preserves the local structure of input domains.
arXiv Detail & Related papers (2020-03-26T22:10:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.