Shadow Ansatz for the Many-Fermion Wave Function in Scalable Molecular Simulations on Quantum Computing Devices
- URL: http://arxiv.org/abs/2408.11026v1
- Date: Tue, 20 Aug 2024 17:27:53 GMT
- Title: Shadow Ansatz for the Many-Fermion Wave Function in Scalable Molecular Simulations on Quantum Computing Devices
- Authors: Yuchen Wang, Irma Avdic, David A. Mazziotti,
- Abstract summary: We show that shadow tomography can generate an efficient and exact ansatz for the many-fermion wave function on quantum devices.
We demonstrate the ansatz's advantages for scalable simulations by computing H$_3$ on simulators and a quantum device.
- Score: 5.915403570478968
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Here we show that shadow tomography can generate an efficient and exact ansatz for the many-fermion wave function on quantum devices. We derive the shadow ansatz -- a product of transformations applied to the mean-field wave function -- by exploiting a critical link between measurement and preparation. Each transformation is obtained by measuring a classical shadow of the residual of the contracted Schr\"odinger equation (CSE), the many-electron Schr\"odinger equation (SE) projected onto the space of two electrons. We show that the classical shadows of the CSE vanish if and only if the wave function satisfies the SE and, hence, that randomly sampling only the two-electron space yields an exact ansatz regardless of the total number of electrons. We demonstrate the ansatz's advantages for scalable simulations -- fewer measurements and shallower circuits -- by computing H$_{3}$ on simulators and a quantum device.
Related papers
- Quantum Computing Simulation of a Mixed Spin-Boson Hamiltonian and Its Performance for a Cavity Quantum Electrodynamics Problem [0.0]
We present a methodology for simulating a phase transition in a pair of cavities that permit photon hopping.
We find that the simulation can be performed with a modest amount of quantum resources.
arXiv Detail & Related papers (2023-10-17T15:25:35Z) - Verifiably Exact Solution of the Electronic Schr\"odinger Equation on
Quantum Devices [0.0]
We present an algorithm that yields verifiably exact solutions of the many-electron Schr"odinger equation.
We demonstrate the algorithm on both quantum simulators and noisy quantum computers.
arXiv Detail & Related papers (2023-03-01T19:00:00Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Coherent excitation of bound electron quantum state with quantum
electron wavepackets [1.5078167156049138]
We present a fully quantum model for excitation of a bound electron based on the free-electron bound-electron resonant interaction (FEBERI) scheme.
The study indicates a possibility of engineering the quantum state of a TLS by utilizing a beam of shaped QEWs.
arXiv Detail & Related papers (2022-06-22T01:56:14Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Scattering in the Ising Model Using Quantum Lanczos Algorithm [0.32228025627337864]
We simulate one-particle propagation and two-particle scattering in the one-dimensional transverse Ising model for 3 and 4 spatial sites on a quantum computer.
Results enable us to compute one- and two-particle transition amplitudes, particle numbers for spatial sites, and the transverse magnetization as functions of time.
arXiv Detail & Related papers (2020-08-20T04:05:52Z) - Quantum Simulation of 2D Quantum Chemistry in Optical Lattices [59.89454513692418]
We propose an analog simulator for discrete 2D quantum chemistry models based on cold atoms in optical lattices.
We first analyze how to simulate simple models, like the discrete versions of H and H$+$, using a single fermionic atom.
We then show that a single bosonic atom can mediate an effective Coulomb repulsion between two fermions, leading to the analog of molecular Hydrogen in two dimensions.
arXiv Detail & Related papers (2020-02-21T16:00:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.