Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model
- URL: http://arxiv.org/abs/2408.11039v1
- Date: Tue, 20 Aug 2024 17:48:20 GMT
- Title: Transfusion: Predict the Next Token and Diffuse Images with One Multi-Modal Model
- Authors: Chunting Zhou, Lili Yu, Arun Babu, Kushal Tirumala, Michihiro Yasunaga, Leonid Shamis, Jacob Kahn, Xuezhe Ma, Luke Zettlemoyer, Omer Levy,
- Abstract summary: We introduce Transfusion, a recipe for training a multi-modal model over discrete and continuous data.
We pretrain multiple Transfusion models up to 7B parameters from scratch on a mixture of text and image data.
Our experiments show that Transfusion scales significantly better than quantizing images and training a language model over discrete image tokens.
- Score: 101.65105730838346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Transfusion, a recipe for training a multi-modal model over discrete and continuous data. Transfusion combines the language modeling loss function (next token prediction) with diffusion to train a single transformer over mixed-modality sequences. We pretrain multiple Transfusion models up to 7B parameters from scratch on a mixture of text and image data, establishing scaling laws with respect to a variety of uni- and cross-modal benchmarks. Our experiments show that Transfusion scales significantly better than quantizing images and training a language model over discrete image tokens. By introducing modality-specific encoding and decoding layers, we can further improve the performance of Transfusion models, and even compress each image to just 16 patches. We further demonstrate that scaling our Transfusion recipe to 7B parameters and 2T multi-modal tokens produces a model that can generate images and text on a par with similar scale diffusion models and language models, reaping the benefits of both worlds.
Related papers
- Diffusion Models For Multi-Modal Generative Modeling [32.61765315067488]
We propose a principled way to define a diffusion model by constructing a unified multi-modal diffusion model in a common diffusion space.
We propose several multimodal generation settings to verify our framework, including image transition, masked-image training, joint image-label and joint image-representation generative modeling.
arXiv Detail & Related papers (2024-07-24T18:04:17Z) - Bridging the Gap between Synthetic and Authentic Images for Multimodal
Machine Translation [51.37092275604371]
Multimodal machine translation (MMT) simultaneously takes the source sentence and a relevant image as input for translation.
Recent studies suggest utilizing powerful text-to-image generation models to provide image inputs.
However, synthetic images generated by these models often follow different distributions compared to authentic images.
arXiv Detail & Related papers (2023-10-20T09:06:30Z) - LLM-grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image
Diffusion Models with Large Language Models [62.75006608940132]
This work proposes to enhance prompt understanding capabilities in text-to-image diffusion models.
Our method leverages a pretrained large language model for grounded generation in a novel two-stage process.
Our method significantly outperforms the base diffusion model and several strong baselines in accurately generating images.
arXiv Detail & Related papers (2023-05-23T03:59:06Z) - Semantic-Conditional Diffusion Networks for Image Captioning [116.86677915812508]
We propose a new diffusion model based paradigm tailored for image captioning, namely Semantic-Conditional Diffusion Networks (SCD-Net)
In SCD-Net, multiple Diffusion Transformer structures are stacked to progressively strengthen the output sentence with better visional-language alignment and linguistical coherence.
Experiments on COCO dataset demonstrate the promising potential of using diffusion models in the challenging image captioning task.
arXiv Detail & Related papers (2022-12-06T16:08:16Z) - DiffusionBERT: Improving Generative Masked Language Models with
Diffusion Models [81.84866217721361]
DiffusionBERT is a new generative masked language model based on discrete diffusion models.
We propose a new noise schedule for the forward diffusion process that controls the degree of noise added at each step.
Experiments on unconditional text generation demonstrate that DiffusionBERT achieves significant improvement over existing diffusion models for text.
arXiv Detail & Related papers (2022-11-28T03:25:49Z) - SinDiffusion: Learning a Diffusion Model from a Single Natural Image [159.4285444680301]
We present SinDiffusion, leveraging denoising diffusion models to capture internal distribution of patches from a single natural image.
It is based on two core designs. First, SinDiffusion is trained with a single model at a single scale instead of multiple models with progressive growing of scales.
Second, we identify that a patch-level receptive field of the diffusion network is crucial and effective for capturing the image's patch statistics.
arXiv Detail & Related papers (2022-11-22T18:00:03Z) - Unsupervised Medical Image Translation with Adversarial Diffusion Models [0.2770822269241974]
Imputation of missing images via source-to-target modality translation can improve diversity in medical imaging protocols.
Here, we propose a novel method based on adversarial diffusion modeling, SynDiff, for improved performance in medical image translation.
arXiv Detail & Related papers (2022-07-17T15:53:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.