論文の概要: GraphFSA: A Finite State Automaton Framework for Algorithmic Learning on Graphs
- arxiv url: http://arxiv.org/abs/2408.11042v1
- Date: Tue, 20 Aug 2024 17:49:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 12:45:00.589554
- Title: GraphFSA: A Finite State Automaton Framework for Algorithmic Learning on Graphs
- Title(参考訳): GraphFSA: グラフによるアルゴリズム学習のための有限状態オートマトンフレームワーク
- Authors: Florian Grötschla, Joël Mathys, Christoffer Raun, Roger Wattenhofer,
- Abstract要約: GraphFSAは、与えられたグラフの各ノード上で動作する有限状態オートマトンを学ぶように設計されている。
セルラーオートマトン問題に対してGraphFSAを試験し、その能力を簡単なアルゴリズム設定で示す。
メインのアプリケーションとして、より精巧なグラフアルゴリズムを学ぶことに集中します。
- 参考スコア(独自算出の注目度): 18.95453617434051
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Many graph algorithms can be viewed as sets of rules that are iteratively applied, with the number of iterations dependent on the size and complexity of the input graph. Existing machine learning architectures often struggle to represent these algorithmic decisions as discrete state transitions. Therefore, we propose a novel framework: GraphFSA (Graph Finite State Automaton). GraphFSA is designed to learn a finite state automaton that runs on each node of a given graph. We test GraphFSA on cellular automata problems, showcasing its abilities in a straightforward algorithmic setting. For a comprehensive empirical evaluation of our framework, we create a diverse range of synthetic problems. As our main application, we then focus on learning more elaborate graph algorithms. Our findings suggest that GraphFSA exhibits strong generalization and extrapolation abilities, presenting an alternative approach to represent these algorithms.
- Abstract(参考訳): 多くのグラフアルゴリズムは、繰り返し適用されるルールの集合と見なすことができ、反復の回数は入力グラフのサイズと複雑さに依存する。
既存の機械学習アーキテクチャは、これらのアルゴリズム的な決定を独立した状態遷移として表現するのに苦労することが多い。
そこで我々はGraphFSA(Graph Finite State Automaton)という新しいフレームワークを提案する。
GraphFSAは、与えられたグラフの各ノード上で動作する有限状態オートマトンを学ぶように設計されている。
セルラーオートマトン問題に対してGraphFSAを試験し、その能力を簡単なアルゴリズム設定で示す。
フレームワークの総合的な経験的評価のために,我々は多種多様な合成問題を創出する。
メインのアプリケーションとして、より精巧なグラフアルゴリズムを学ぶことに集中します。
以上の結果から,GraphFSAは強力な一般化と外挿能力を示し,これらのアルゴリズムを表現するための代替手法を提案する。
関連論文リスト
- G-Retriever: Retrieval-Augmented Generation for Textual Graph Understanding and Question Answering [61.93058781222079]
現実のテキストグラフを対象とするフレキシブルな問合せフレームワークを開発した。
一般のテキストグラフに対する最初の検索拡張生成(RAG)手法を提案する。
G-Retrieverは、このタスクをSteiner Tree最適化問題として定式化し、グラフ上でRAGを実行する。
論文 参考訳(メタデータ) (2024-02-12T13:13:04Z) - MGNet: Learning Correspondences via Multiple Graphs [78.0117352211091]
学習対応は、不均一な対応分布と低い不整合率で設定された初期対応から正しい対応を見つけることを目的としている。
最近の進歩は、通常、グラフニューラルネットワーク(GNN)を使用して単一のタイプのグラフを構築したり、グローバルなグラフに局所グラフをスタックしてタスクを完了させる。
本稿では,複数の補完グラフを効果的に組み合わせるためのMGNetを提案する。
論文 参考訳(メタデータ) (2024-01-10T07:58:44Z) - The Graph Lottery Ticket Hypothesis: Finding Sparse, Informative Graph
Structure [18.00833762891405]
Graph Lottery Ticket (GLT)仮説: グラフごとに非常に疎いバックボーンが存在する。
本研究は,グラフ学習アルゴリズムの性能に直接影響を及ぼす関心の指標を8つ研究する。
任意のグラフでこれらのGLTを見つけるための単純で効率的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-12-08T00:24:44Z) - Can Language Models Solve Graph Problems in Natural Language? [51.28850846990929]
大型言語モデル (LLM) は暗黙的なグラフィカル構造を持つ様々なタスクに採用されている。
自然言語をシミュレーションするグラフベース問題解決のベンチマークであるNLGraphを提案する。
論文 参考訳(メタデータ) (2023-05-17T08:29:21Z) - Learning Graph Algorithms With Recurrent Graph Neural Networks [8.873449722727026]
我々は、単純なグラフ問題を末尾から末尾まで小さなグラフで学習し、より大きなインスタンスに拡張する、反復的なアーキテクチャ設計に重点を置いている。
We use (i) skip connection, (ii) state regularization, and (iii) edge convolutions to guide GNNs to extrapolation。
論文 参考訳(メタデータ) (2022-12-09T15:42:22Z) - Synthetic Graph Generation to Benchmark Graph Learning [7.914804101579097]
グラフ学習アルゴリズムは多くのグラフ解析タスクで最先端のパフォーマンスを達成した。
1つの理由は、グラフ学習アルゴリズムのパフォーマンスをベンチマークするために実際に使用されるデータセットが極めて少ないためである。
本稿では,合成グラフの生成と,制御シナリオにおけるグラフ学習アルゴリズムの挙動について検討する。
論文 参考訳(メタデータ) (2022-04-04T10:48:32Z) - Automated Graph Machine Learning: Approaches, Libraries, Benchmarks and Directions [58.220137936626315]
本稿では,グラフ機械学習の自動手法について論じる。
当社の専用かつ世界初のグラフ機械学習のためのオープンソースライブラリであるAutoGLを紹介します。
また、統一的で再現性があり、効率的な評価をサポートする調整されたベンチマークについて述べる。
論文 参考訳(メタデータ) (2022-01-04T18:31:31Z) - Automated Machine Learning on Graphs: A Survey [81.21692888288658]
本稿では,グラフ上の自動機械学習の体系的かつ包括的レビューを行う。
グラフ機械学習のためのハイパーパラメータ最適化(HPO)とニューラルアーキテクチャ探索(NAS)に注目した。
最後に、自動化グラフ機械学習の今後の研究方向に関する洞察を共有します。
論文 参考訳(メタデータ) (2021-03-01T04:20:33Z) - Learning Graph Structure With A Finite-State Automaton Layer [31.028101360041227]
本研究は,本質的なグラフ構造から抽象的関係を導出する学習の課題について考察する。
この問題を緩和して有限状態オートマトンポリシーを学習することで、これらの関係をエンドツーエンドで学習する方法を示す。
我々は,このレイヤがグリッドワールドグラフのショートカットを見つけ,Pythonプログラム上で単純な静的解析を再現できることを実証した。
論文 参考訳(メタデータ) (2020-07-09T17:01:34Z) - Learning to Solve Combinatorial Optimization Problems on Real-World
Graphs in Linear Time [12.43303621344215]
専門知識のないグラフ上での最適化問題を解くための新しいフレームワークを開発する。
本手法は,グラフのラベル付きトレーニングセット上で強化学習を用いてグラフニューラルネットワークを訓練する。
最適性ギャップが 1 に近い 2 つのNP-ハード問題に対して,本手法がよく一般化可能であることを示す。
論文 参考訳(メタデータ) (2020-06-06T01:35:45Z) - Unsupervised Graph Embedding via Adaptive Graph Learning [85.28555417981063]
グラフオートエンコーダ(GAE)は、グラフ埋め込みのための表現学習において強力なツールである。
本稿では,2つの新しい教師なしグラフ埋め込み法,適応グラフ学習(BAGE)による教師なしグラフ埋め込み,変分適応グラフ学習(VBAGE)による教師なしグラフ埋め込みを提案する。
いくつかのデータセットに関する実験的研究により、我々の手法がノードクラスタリング、ノード分類、グラフ可視化タスクにおいて、ベースラインよりも優れていることが実証された。
論文 参考訳(メタデータ) (2020-03-10T02:33:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。